|
LSSTApplications
8.0.0.0+107,8.0.0.1+13,9.1+18,9.2,master-g084aeec0a4,master-g0aced2eed8+6,master-g15627eb03c,master-g28afc54ef9,master-g3391ba5ea0,master-g3d0fb8ae5f,master-g4432ae2e89+36,master-g5c3c32f3ec+17,master-g60f1e072bb+1,master-g6a3ac32d1b,master-g76a88a4307+1,master-g7bce1f4e06+57,master-g8ff4092549+31,master-g98e65bf68e,master-ga6b77976b1+53,master-gae20e2b580+3,master-gb584cd3397+53,master-gc5448b162b+1,master-gc54cf9771d,master-gc69578ece6+1,master-gcbf758c456+22,master-gcec1da163f+63,master-gcf15f11bcc,master-gd167108223,master-gf44c96c709
LSSTDataManagementBasePackage
|
You can use the C++ APIs to manipulate images and bits of images from python, e.g.
sets a 4x10 portion of image im to 100 (I used im.Factory to avoid repeating afwImage.ImageF, rendering the code non-generic). I can't simply say sim = 100 as that'd make sim an integer rather than setting the pixel values to 100. I used an Image, but a Mask or a MaskedImage would work too (and I can create a sub-Exposure, although I can't assign to it).
This syntax gets boring fast.
We accordingly added some syntactic sugar at the swig level. I can write the preceeding example as:
_i.e._ create a subimage and assign to it. afw's image slices are always shallow (but you can `clone` them as we shall see).
Note that the order is `[x, y]`**. This is consistent with our C++ code (_e.g._ it's `PointI(x, y)`), but different from numpy's matrix-like `[row, column]`.
This opens up various possiblities; the following all work:
You might expect to be able to say print im[0,20] but you won't get what you expect (it's an image, not a pixel value); say print float(im[0,20]) instead.
The one remaining thing that you can't do it make a deep copy (the left-hand-side has to pre-exist), but fortunately
works.
You will **remember that the previous section used `[x, y]`** whereas numpy uses `[row, column]` which is *different*; you have been warned.
You can achieve similar effects using numpy. For example, after creating im as above, I can use getArray to return a view of the image (i.e. the numpy object shares memory with the C++ object), so:
will also set a sub-image's value (but a different sub-image from `im[1:5, 2:8]`). You can do more complex operations using numpy syntax, e.g.
which is very convenient, although there's a good chance that you'll be creating temporaries the size of im.
1.8.5