LSST Applications g00274db5b6+edbf708997,g00d0e8bbd7+edbf708997,g199a45376c+5137f08352,g1fd858c14a+1d4b6db739,g262e1987ae+f4d9505c4f,g29ae962dfc+7156fb1a53,g2cef7863aa+73c82f25e4,g35bb328faa+edbf708997,g3e17d7035e+5b3adc59f5,g3fd5ace14f+852fa6fbcb,g47891489e3+6dc8069a4c,g53246c7159+edbf708997,g64539dfbff+9f17e571f4,g67b6fd64d1+6dc8069a4c,g74acd417e5+ae494d68d9,g786e29fd12+af89c03590,g7ae74a0b1c+a25e60b391,g7aefaa3e3d+536efcc10a,g7cc15d900a+d121454f8d,g87389fa792+a4172ec7da,g89139ef638+6dc8069a4c,g8d7436a09f+28c28d8d6d,g8ea07a8fe4+db21c37724,g92c671f44c+9f17e571f4,g98df359435+b2e6376b13,g99af87f6a8+b0f4ad7b8d,gac66b60396+966efe6077,gb88ae4c679+7dec8f19df,gbaa8f7a6c5+38b34f4976,gbf99507273+edbf708997,gc24b5d6ed1+9f17e571f4,gca7fc764a6+6dc8069a4c,gcc769fe2a4+97d0256649,gd7ef33dd92+6dc8069a4c,gdab6d2f7ff+ae494d68d9,gdbb4c4dda9+9f17e571f4,ge410e46f29+6dc8069a4c,geaed405ab2+e194be0d2b,w.2025.47
LSST Data Management Base Package
Loading...
Searching...
No Matches
_coaddInputsContinued.py
Go to the documentation of this file.
1# This file is part of afw.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18
19from lsst.utils import continueClass
20
21from ._imageLib import CoaddInputs
22
23import numpy as np
24
25__all__ = [] # import this module only for its side effects
26
27
28@continueClass
29class CoaddInputs: # noqa: F811
30
31 def subset_containing_ccds(self, point, wcs, includeValidPolygon=False):
32 """Return a view (shallow copy) of ExposureCatalog containing only the
33 subset of detectors that contain the given point.
34
35 Parameters
36 ----------
37 point : `~lsst.geom.Point2D`
38 Point in the coadd coordinate system.
39 wcs : `lsst.geom.SkyWcs`
40 WCS for the coadd coordinate system. This is ignored if the
41 CoaddInputs are made by stitching cell_coadds.
42 includeValidPolygon : `bool`, optional
43 If True, check that the point is within the validPolygon of those records which have one.
44
45 Returns
46 -------
47 subset : `~lsst.afw.table.ExposureCatalog`
48 ExposureCatalog containing only the relevant detector records.
49 """
50
51 ccds = self.ccds
52 # If the records have a WCS attached, we interpret that to mean that
53 # they come from a genuine afw exposure. If not, we interpret that to
54 # mean they come from cell_coadds. For the latter, the validPolygons
55 # are already in coadd coordinates and WCS lookup is not needed.
56 if len(ccds) == 0 or ccds[0].wcs is not None:
57 return ccds.subsetContaining(point, wcs, includeValidPolygon)
58 else:
59 cuts = np.array([record.validPolygon.contains(point) for record in ccds])
60 return ccds[cuts]
61
62 def subset_containing_visits(self, point, wcs, includeValidPolygon=False):
63 """Return a view (shallow copy) of ExposureCatalog containing only the
64 subset of visits that contain the given point.
65
66 Parameters
67 ----------
68 point : `~lsst.geom.Point2D`
69 Point in the coadd coordinate system.
70 wcs : `lsst.geom.SkyWcs`
71 WCS for the coadd coordinate system. This is ignored if the
72 CoaddInputs are made by stitching cell_coadds.
73 includeValidPolygon : `bool`, optional
74 If True, check that the point is within the validPolygon of those records which have one.
75
76 Returns
77 -------
78 subset : `~lsst.afw.table.ExposureCatalog`
79 ExposureCatalog containing only the relevant visit records.
80 """
81
82 visits = self.visits
83 if len(visits) == 0 or visits[0].wcs is not None:
84 return visits.subsetContaining(point, wcs, includeValidPolygon)
85 else:
86 ccd_cuts = np.array([record.validPolygon.contains(point) for record in self.ccds])
87 visit_cuts = np.isin(visits["visit"], self.ccds["visit"][ccd_cuts])
88 return visits[visit_cuts]
subset_containing_visits(self, point, wcs, includeValidPolygon=False)
subset_containing_ccds(self, point, wcs, includeValidPolygon=False)