LSST Applications g0f08755f38+82efc23009,g12f32b3c4e+e7bdf1200e,g1653933729+a8ce1bb630,g1a0ca8cf93+50eff2b06f,g28da252d5a+52db39f6a5,g2bbee38e9b+37c5a29d61,g2bc492864f+37c5a29d61,g2cdde0e794+c05ff076ad,g3156d2b45e+41e33cbcdc,g347aa1857d+37c5a29d61,g35bb328faa+a8ce1bb630,g3a166c0a6a+37c5a29d61,g3e281a1b8c+fb992f5633,g414038480c+7f03dfc1b0,g41af890bb2+11b950c980,g5fbc88fb19+17cd334064,g6b1c1869cb+12dd639c9a,g781aacb6e4+a8ce1bb630,g80478fca09+72e9651da0,g82479be7b0+04c31367b4,g858d7b2824+82efc23009,g9125e01d80+a8ce1bb630,g9726552aa6+8047e3811d,ga5288a1d22+e532dc0a0b,gae0086650b+a8ce1bb630,gb58c049af0+d64f4d3760,gc28159a63d+37c5a29d61,gcf0d15dbbd+2acd6d4d48,gd7358e8bfb+778a810b6e,gda3e153d99+82efc23009,gda6a2b7d83+2acd6d4d48,gdaeeff99f8+1711a396fd,ge2409df99d+6b12de1076,ge79ae78c31+37c5a29d61,gf0baf85859+d0a5978c5a,gf3967379c6+4954f8c433,gfb92a5be7c+82efc23009,gfec2e1e490+2aaed99252,w.2024.46
LSST Data Management Base Package
Loading...
Searching...
No Matches
_functionLibrary.cc
Go to the documentation of this file.
1/*
2 * LSST Data Management System
3 * Copyright 2008-2016 AURA/LSST.
4 *
5 * This product includes software developed by the
6 * LSST Project (http://www.lsst.org/).
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the LSST License Statement and
19 * the GNU General Public License along with this program. If not,
20 * see <https://www.lsstcorp.org/LegalNotices/>.
21 */
22#include <memory>
23
24#include <pybind11/pybind11.h>
26
27#include <pybind11/stl.h>
28
29#include "lsst/geom/Box.h"
30#include "lsst/geom/Point.h"
31
34
35namespace py = pybind11;
36using namespace pybind11::literals;
37
39
40namespace lsst {
41namespace afw {
42namespace math {
43
44template <typename ReturnT>
46 /* PolynomialFunction1 */
47
48 wrappers.wrapType(
50 Function1<ReturnT>>(wrappers.module, ("PolynomialFunction1" + suffix).c_str()),
51 [](auto &mod, auto &cls) {
52 cls.def(py::init<std::vector<double> const &>(), "params"_a);
53 cls.def(py::init<unsigned int>(), "order"_a);
54
55 cls.def("__call__", &PolynomialFunction1<ReturnT>::operator(), "x"_a);
56 cls.def("clone", &PolynomialFunction1<ReturnT>::clone);
57 cls.def("isLinearCombination", &PolynomialFunction1<ReturnT>::isLinearCombination);
58 cls.def("getOrder", &PolynomialFunction1<ReturnT>::getOrder);
59 cls.def("toString", &PolynomialFunction1<ReturnT>::toString, "prefix"_a = "");
60 });
61 /* PolynomialFunction2 */
63 BasePolynomialFunction2<ReturnT>>(wrappers.module,
64 ("PolynomialFunction2" + suffix).c_str()),
65 [](auto &mod, auto &cls) {
66 cls.def(py::init<std::vector<double> const &>(), "params"_a);
67 cls.def(py::init<unsigned int>(), "order"_a);
68
69 cls.def("__call__", &PolynomialFunction2<ReturnT>::operator(), "x"_a, "y"_a);
70 cls.def("clone", &PolynomialFunction2<ReturnT>::clone);
71 cls.def("getOrder", &PolynomialFunction2<ReturnT>::getOrder);
72 cls.def("getDFuncDParameters", &PolynomialFunction2<ReturnT>::getDFuncDParameters);
73 cls.def("toString", &PolynomialFunction2<ReturnT>::toString, "prefix"_a = "");
74 cls.def("isPersistable", &PolynomialFunction2<ReturnT>::isPersistable);
75 });
76};
77
78template <typename ReturnT>
80 /* Chebyshev1Function1 */
81
82 wrappers.wrapType(
84 Function1<ReturnT>>(wrappers.module, ("Chebyshev1Function1" + suffix).c_str()),
85 [](auto &mod, auto &cls) {
86 cls.def(py::init<std::vector<double>, double, double>(), "params"_a, "minX"_a = -1,
87 "maxX"_a = 1);
88 cls.def(py::init<unsigned int, double, double>(), "order"_a, "minX"_a = -1, "maxX"_a = 1);
89
90 cls.def("__call__", &Chebyshev1Function1<ReturnT>::operator(), "x"_a);
91 cls.def("clone", &Chebyshev1Function1<ReturnT>::clone);
92 cls.def("getMinX", &Chebyshev1Function1<ReturnT>::getMinX);
93 cls.def("getMaxX", &Chebyshev1Function1<ReturnT>::getMaxX);
94 cls.def("getOrder", &Chebyshev1Function1<ReturnT>::getOrder);
95 cls.def("isLinearCombination", &Chebyshev1Function1<ReturnT>::isLinearCombination);
96 cls.def("toString", &Chebyshev1Function1<ReturnT>::toString, "prefix"_a = "");
97
98 /* Chebyshev1Function2 */
99 });
101 BasePolynomialFunction2<ReturnT>>(wrappers.module,
102 ("Chebyshev1Function2" + suffix).c_str()),
103 [](auto &mod, auto &cls) {
104 cls.def(py::init<std::vector<double>, lsst::geom::Box2D const &>(), "params"_a,
105 "xyRange"_a = lsst::geom::Box2D(lsst::geom::Point2D(-1.0, -1.0),
106 lsst::geom::Point2D(1.0, 1.0)));
107 cls.def(py::init<unsigned int, lsst::geom::Box2D const &>(), "order"_a,
108 "xyRange"_a = lsst::geom::Box2D(lsst::geom::Point2D(-1.0, -1.0),
109 lsst::geom::Point2D(1.0, 1.0)));
110
111 cls.def("__call__", &Chebyshev1Function2<ReturnT>::operator(), "x"_a, "y"_a);
112 cls.def("clone", &Chebyshev1Function2<ReturnT>::clone);
113 cls.def("getXYRange", &Chebyshev1Function2<ReturnT>::getXYRange);
114 cls.def("truncate", &Chebyshev1Function2<ReturnT>::truncate, "order"_a);
115 cls.def("toString", &Chebyshev1Function2<ReturnT>::toString, "prefix"_a = "");
116 cls.def("isPersistable", &Chebyshev1Function2<ReturnT>::isPersistable);
117 });
118};
119
120template <typename ReturnT>
122 /* GaussianFunction1 */
124 Function1<ReturnT>>(wrappers.module, ("GaussianFunction1" + suffix).c_str()),
125 [](auto &mod, auto &cls) {
126 cls.def(py::init<double>(), "sigma"_a);
127
128 cls.def("__call__", &GaussianFunction1<ReturnT>::operator(), "x"_a);
129 cls.def("clone", &GaussianFunction1<ReturnT>::clone);
130 cls.def("toString", &GaussianFunction1<ReturnT>::toString, "prefix"_a = "");
131 });
132
134 Function2<ReturnT>>(wrappers.module, ("GaussianFunction2" + suffix).c_str()),
135 [](auto &mod, auto &cls) {
136 /* GaussianFunction2 */
137
138 cls.def(py::init<double, double, double>(), "sigma1"_a, "sigma2"_a,
139 "angle"_a = 0.0);
140
141 cls.def("__call__", &GaussianFunction2<ReturnT>::operator(), "x"_a, "y"_a);
142 cls.def("clone", &GaussianFunction2<ReturnT>::clone);
143 cls.def("toString", &GaussianFunction2<ReturnT>::toString, "prefix"_a = "");
144 cls.def("isPersistable", &GaussianFunction2<ReturnT>::isPersistable);
145 });
146 /* DoubleGaussianFunction2 */
147
148 wrappers.wrapType(
150 Function2<ReturnT>>(wrappers.module, ("DoubleGaussianFunction2" + suffix).c_str()),
151 [](auto &mod, auto &cls) {
152 cls.def(py::init<double, double, double>(), "sigma1"_a, "sigma2"_a = 0, "ampl"_a = 0);
153
154 cls.def("__call__", &DoubleGaussianFunction2<ReturnT>::operator(), "x"_a, "y"_a);
155 cls.def("clone", &DoubleGaussianFunction2<ReturnT>::clone);
156 cls.def("toString", &DoubleGaussianFunction2<ReturnT>::toString, "prefix"_a = "");
157 cls.def("isPersistable", &DoubleGaussianFunction2<ReturnT>::isPersistable);
158 });
159};
160
161template <typename ReturnT>
163 const std::string &suffix) {
164 /* IntegerDeltaFunction1 */
165
166 wrappers.wrapType(
168 Function1<ReturnT>>(wrappers.module, ("IntegerDeltaFunction1" + suffix).c_str()),
169 [](auto &mod, auto &cls) {
170 cls.def(py::init<double>(), "xo"_a);
171
172 cls.def("__call__", &IntegerDeltaFunction1<ReturnT>::operator(), "x"_a);
173 cls.def("clone", &IntegerDeltaFunction1<ReturnT>::clone);
174 cls.def("toString", &IntegerDeltaFunction1<ReturnT>::toString, "prefix"_a = "");
175 });
176 /* IntegerDeltaFunction2 */
177
178 wrappers.wrapType(
180 Function2<ReturnT>>(wrappers.module, ("IntegerDeltaFunction2" + suffix).c_str()),
181 [](auto &mod, auto &cls) {
182 cls.def(py::init<double, double>(), "xo"_a, "yo"_a);
183
184 cls.def("__call__", &IntegerDeltaFunction2<ReturnT>::operator(), "x"_a, "y"_a);
185 cls.def("clone", &IntegerDeltaFunction2<ReturnT>::clone);
186 cls.def("toString", &IntegerDeltaFunction2<ReturnT>::toString, "prefix"_a = "");
187 });
188};
189
190template <typename ReturnT>
192 /* LanczosFunction1 */
193
195 Function1<ReturnT>>(wrappers.module, ("LanczosFunction1" + suffix).c_str()),
196 [](auto &mod, auto &cls) {
197 cls.def(py::init<unsigned int, double>(), "n"_a, "xOffset"_a = 0.0);
198
199 cls.def("__call__", &LanczosFunction1<ReturnT>::operator(), "x"_a);
200 cls.def("clone", &LanczosFunction1<ReturnT>::clone);
201 cls.def("getOrder", &LanczosFunction1<ReturnT>::getOrder);
202 cls.def("toString", &LanczosFunction1<ReturnT>::toString, "prefix"_a = "");
203 });
204 /* LanczosFunction2 */
205
207 Function2<ReturnT>>(wrappers.module, ("LanczosFunction2" + suffix).c_str()),
208 [](auto &mod, auto &cls) {
209 /* LanczosFunction2 */
210 cls.def(py::init<unsigned int, double, double>(), "n"_a, "xOffset"_a = 0.0,
211 "yOffset"_a = 0.0);
212
213 cls.def("__call__", &LanczosFunction2<ReturnT>::operator(), "x"_a, "y"_a);
214 cls.def("clone", &LanczosFunction2<ReturnT>::clone);
215 cls.def("getOrder", &LanczosFunction2<ReturnT>::getOrder);
216 cls.def("toString", &LanczosFunction2<ReturnT>::toString, "prefix"_a = "");
217 });
218};
219
221 wrappers.addInheritanceDependency("lsst.geom");
222 declarePolynomialFunctions<float>(wrappers, "F");
223 declareChebyshevFunctions<float>(wrappers, "F");
224 declareGaussianFunctions<float>(wrappers, "F");
225 declareIntegerDeltaFunctions<float>(wrappers, "F");
226 declareLanczosFunctions<float>(wrappers, "F");
227
228 declarePolynomialFunctions<double>(wrappers, "D");
229 declareChebyshevFunctions<double>(wrappers, "D");
230 declareGaussianFunctions<double>(wrappers, "D");
231 declareIntegerDeltaFunctions<double>(wrappers, "D");
232 declareLanczosFunctions<double>(wrappers, "D");
233}
234
235} // namespace math
236} // namespace afw
237} // namespace lsst
PYBIND11_DECLARE_HOLDER_TYPE(MyType, std::shared_ptr< MyType >)
Base class for 2-dimensional polynomials of the form:
Definition Function.h:326
1-dimensional weighted sum of Chebyshev polynomials of the first kind.
2-dimensional weighted sum of Chebyshev polynomials of the first kind.
double Guassian (sum of two Gaussians)
A Function taking one argument.
Definition Function.h:202
A Function taking two arguments.
Definition Function.h:259
1-dimensional integer delta function.
2-dimensional integer delta function.
1-dimensional Lanczos function
2-dimensional separable Lanczos function
1-dimensional polynomial function.
2-dimensional polynomial function with cross terms
A helper class for subdividing pybind11 module across multiple translation units (i....
Definition python.h:242
void addInheritanceDependency(std::string const &name)
Indicate an external module that provides a base class for a subsequent addType call.
Definition python.h:343
PyType wrapType(PyType cls, ClassWrapperCallback function, bool setModuleName=true)
Add a type (class or enum) wrapper, deferring method and other attribute definitions until finish() i...
Definition python.h:391
void declareChebyshevFunctions(lsst::cpputils::python::WrapperCollection &wrappers, const std::string &suffix)
void declareGaussianFunctions(lsst::cpputils::python::WrapperCollection &wrappers, const std::string &suffix)
void declareLanczosFunctions(lsst::cpputils::python::WrapperCollection &wrappers, const std::string &suffix)
void declareIntegerDeltaFunctions(lsst::cpputils::python::WrapperCollection &wrappers, const std::string &suffix)
void declarePolynomialFunctions(lsst::cpputils::python::WrapperCollection &wrappers, const std::string &suffix)
void wrapFunctionLibrary(lsst::cpputils::python::WrapperCollection &wrappers)