LSST Applications g063fba187b+cac8b7c890,g0f08755f38+6aee506743,g1653933729+a8ce1bb630,g168dd56ebc+a8ce1bb630,g1a2382251a+b4475c5878,g1dcb35cd9c+8f9bc1652e,g20f6ffc8e0+6aee506743,g217e2c1bcf+73dee94bd0,g28da252d5a+1f19c529b9,g2bbee38e9b+3f2625acfc,g2bc492864f+3f2625acfc,g3156d2b45e+6e55a43351,g32e5bea42b+1bb94961c2,g347aa1857d+3f2625acfc,g35bb328faa+a8ce1bb630,g3a166c0a6a+3f2625acfc,g3e281a1b8c+c5dd892a6c,g3e8969e208+a8ce1bb630,g414038480c+5927e1bc1e,g41af890bb2+8a9e676b2a,g7af13505b9+809c143d88,g80478fca09+6ef8b1810f,g82479be7b0+f568feb641,g858d7b2824+6aee506743,g89c8672015+f4add4ffd5,g9125e01d80+a8ce1bb630,ga5288a1d22+2903d499ea,gb58c049af0+d64f4d3760,gc28159a63d+3f2625acfc,gcab2d0539d+b12535109e,gcf0d15dbbd+46a3f46ba9,gda6a2b7d83+46a3f46ba9,gdaeeff99f8+1711a396fd,ge79ae78c31+3f2625acfc,gef2f8181fd+0a71e47438,gf0baf85859+c1f95f4921,gfa517265be+6aee506743,gfa999e8aa5+17cd334064,w.2024.51
LSST Data Management Base Package
Loading...
Searching...
No Matches
BasicConvolve.cc
Go to the documentation of this file.
1// -*- LSST-C++ -*-
2
3/*
4 * LSST Data Management System
5 * Copyright 2008, 2009, 2010 LSST Corporation.
6 *
7 * This product includes software developed by the
8 * LSST Project (http://www.lsst.org/).
9 *
10 * This program is free software: you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, either version 3 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the LSST License Statement and
21 * the GNU General Public License along with this program. If not,
22 * see <http://www.lsstcorp.org/LegalNotices/>.
23 */
24
25/*
26 * Definition of basicConvolve and convolveWithBruteForce functions declared in detail/ConvolveImage.h
27 */
28#include <algorithm>
29#include <cstdint>
30#include <sstream>
31#include <vector>
32
33#include "lsst/pex/exceptions.h"
34#include "lsst/log/Log.h"
35#include "lsst/geom.h"
40
42
43namespace {
44
53template <typename OutImageT, typename InImageT>
54void assertDimensionsOK(OutImageT const& convolvedImage, InImageT const& inImage,
55 lsst::afw::math::Kernel const& kernel) {
56 if (convolvedImage.getDimensions() != inImage.getDimensions()) {
58 os << "convolvedImage dimensions = ( " << convolvedImage.getWidth() << ", "
59 << convolvedImage.getHeight() << ") != (" << inImage.getWidth() << ", " << inImage.getHeight()
60 << ") = inImage dimensions";
62 }
63 if (inImage.getWidth() < kernel.getWidth() || inImage.getHeight() < kernel.getHeight()) {
65 os << "inImage dimensions = ( " << inImage.getWidth() << ", " << inImage.getHeight()
66 << ") smaller than (" << kernel.getWidth() << ", " << kernel.getHeight()
67 << ") = kernel dimensions in width and/or height";
69 }
70 if ((kernel.getWidth() < 1) || (kernel.getHeight() < 1)) {
72 os << "kernel dimensions = ( " << kernel.getWidth() << ", " << kernel.getHeight()
73 << ") smaller than (1, 1) in width and/or height";
75 }
76}
118template <typename OutPixelT, typename ImageIterT, typename KernelIterT, typename KernelPixelT>
119inline OutPixelT kernelDotProduct(
120 ImageIterT imageIter,
121 KernelIterT kernelIter,
122 int kWidth)
123{
124 OutPixelT outPixel(0);
125 for (int x = 0; x < kWidth; ++x, ++imageIter, ++kernelIter) {
126 KernelPixelT kVal = *kernelIter;
127 if (kVal != 0) {
128 outPixel += static_cast<OutPixelT>((*imageIter) * kVal);
129 }
130 }
131 return outPixel;
132}
133} // anonymous namespace
134
135namespace lsst {
136namespace afw {
137namespace math {
138namespace detail {
139
140template <typename OutImageT, typename InImageT>
141void basicConvolve(OutImageT& convolvedImage, InImageT const& inImage, math::Kernel const& kernel,
142 math::ConvolutionControl const& convolutionControl) {
143 // Because convolve isn't a method of Kernel we can't always use Kernel's vtbl to dynamically
144 // dispatch the correct version of basicConvolve. The case that fails is convolving with a kernel
145 // obtained from a pointer or reference to a Kernel (base class), e.g. as used in LinearCombinationKernel.
147 LOGL_DEBUG("TRACE3.lsst.afw.math.convolve.basicConvolve",
148 "generic basicConvolve: dispatch to DeltaFunctionKernel basicConvolve");
149 basicConvolve(convolvedImage, inImage, *dynamic_cast<math::DeltaFunctionKernel const*>(&kernel),
150 convolutionControl);
151 return;
152 } else if (IS_INSTANCE(kernel, math::SeparableKernel)) {
153 LOGL_DEBUG("TRACE3.lsst.afw.math.convolve.basicConvolve",
154 "generic basicConvolve: dispatch to SeparableKernel basicConvolve");
155 basicConvolve(convolvedImage, inImage, *dynamic_cast<math::SeparableKernel const*>(&kernel),
156 convolutionControl);
157 return;
158 } else if (IS_INSTANCE(kernel, math::LinearCombinationKernel) && kernel.isSpatiallyVarying()) {
160 "TRACE3.afw.math.convolve.basicConvolve",
161 "generic basicConvolve: dispatch to spatially varying LinearCombinationKernel basicConvolve");
162 basicConvolve(convolvedImage, inImage, *dynamic_cast<math::LinearCombinationKernel const*>(&kernel),
163 convolutionControl);
164 return;
165 }
166 // OK, use general (and slower) form
167 if (kernel.isSpatiallyVarying() && (convolutionControl.getMaxInterpolationDistance() > 1)) {
168 // use linear interpolation
169 LOGL_DEBUG("TRACE2.lsst.afw.math.convolve.basicConvolve",
170 "generic basicConvolve: using linear interpolation");
171 convolveWithInterpolation(convolvedImage, inImage, kernel, convolutionControl);
172
173 } else {
174 // use brute force
175 LOGL_DEBUG("TRACE2.lsst.afw.math.convolve.basicConvolve", "generic basicConvolve: using brute force");
176 convolveWithBruteForce(convolvedImage, inImage, kernel, convolutionControl);
177 }
178}
179
180template <typename OutImageT, typename InImageT>
181void basicConvolve(OutImageT& convolvedImage, InImageT const& inImage,
182 math::DeltaFunctionKernel const& kernel,
183 math::ConvolutionControl const& convolutionControl) {
184 assert(!kernel.isSpatiallyVarying());
185 assertDimensionsOK(convolvedImage, inImage, kernel);
186
187 int const mImageWidth = inImage.getWidth(); // size of input region
188 int const mImageHeight = inImage.getHeight();
189 int const cnvWidth = mImageWidth + 1 - kernel.getWidth();
190 int const cnvHeight = mImageHeight + 1 - kernel.getHeight();
191 int const cnvStartX = kernel.getCtr().getX();
192 int const cnvStartY = kernel.getCtr().getY();
193 int const inStartX = kernel.getPixel().getX();
194 int const inStartY = kernel.getPixel().getY();
195
196 LOGL_DEBUG("TRACE2.lsst.afw.math.convolve.basicConvolve", "DeltaFunctionKernel basicConvolve");
197
198 for (int i = 0; i < cnvHeight; ++i) {
199 typename InImageT::x_iterator inPtr = inImage.x_at(inStartX, i + inStartY);
200 for (typename OutImageT::x_iterator cnvPtr = convolvedImage.x_at(cnvStartX, i + cnvStartY),
201 cnvEnd = cnvPtr + cnvWidth;
202 cnvPtr != cnvEnd; ++cnvPtr, ++inPtr) {
203 *cnvPtr = *inPtr;
204 }
205 }
206}
207
208template <typename OutImageT, typename InImageT>
209void basicConvolve(OutImageT& convolvedImage, InImageT const& inImage,
210 math::LinearCombinationKernel const& kernel,
211 math::ConvolutionControl const& convolutionControl) {
212 if (!kernel.isSpatiallyVarying()) {
213 // use the standard algorithm for the spatially invariant case
214 LOGL_DEBUG("TRACE2.lsst.afw.math.convolve.basicConvolve",
215 "basicConvolve for LinearCombinationKernel: spatially invariant; using brute force");
216 return convolveWithBruteForce(convolvedImage, inImage, kernel, convolutionControl.getDoNormalize());
217 } else {
218 // refactor the kernel if this is reasonable and possible;
219 // then use the standard algorithm for the spatially varying case
220 std::shared_ptr<Kernel> refKernelPtr; // possibly refactored version of kernel
221 if (static_cast<int>(kernel.getNKernelParameters()) > kernel.getNSpatialParameters()) {
222 // refactoring will speed convolution, so try it
223 refKernelPtr = kernel.refactor();
224 if (!refKernelPtr) {
225 refKernelPtr = kernel.clone();
226 }
227 } else {
228 // too few basis kernels for refactoring to be worthwhile
229 refKernelPtr = kernel.clone();
230 }
231 if (convolutionControl.getMaxInterpolationDistance() > 1) {
232 LOGL_DEBUG("TRACE2.lsst.afw.math.convolve.basicConvolve",
233 "basicConvolve for LinearCombinationKernel: using interpolation");
234 return convolveWithInterpolation(convolvedImage, inImage, *refKernelPtr, convolutionControl);
235 } else {
236 LOGL_DEBUG("TRACE2.lsst.afw.math.convolve.basicConvolve",
237 "basicConvolve for LinearCombinationKernel: maxInterpolationError < 0; using brute "
238 "force");
239 return convolveWithBruteForce(convolvedImage, inImage, *refKernelPtr,
240 convolutionControl.getDoNormalize());
241 }
242 }
243}
244
245template <typename OutImageT, typename InImageT>
246void basicConvolve(OutImageT& convolvedImage, InImageT const& inImage, math::SeparableKernel const& kernel,
247 math::ConvolutionControl const& convolutionControl) {
248 using KernelPixel = typename math::Kernel::Pixel;
249 using KernelVector = typename std::vector<KernelPixel>;
250 using KernelIterator = KernelVector::const_iterator;
251 using InXIterator = typename InImageT::const_x_iterator;
252 using InXYLocator = typename InImageT::const_xy_locator;
253 using OutXIterator = typename OutImageT::x_iterator;
254 using OutYIterator = typename OutImageT::y_iterator;
255 using OutPixel = typename OutImageT::SinglePixel;
256
257 assertDimensionsOK(convolvedImage, inImage, kernel);
258
259 lsst::geom::Box2I const fullBBox = inImage.getBBox(image::LOCAL);
260 lsst::geom::Box2I const goodBBox = kernel.shrinkBBox(fullBBox);
261
262 KernelVector kernelXVec(kernel.getWidth());
263 KernelVector kernelYVec(kernel.getHeight());
264
265 if (kernel.isSpatiallyVarying()) {
266 LOGL_DEBUG("TRACE2.lsst.afw.math.convolve.basicConvolve",
267 "SeparableKernel basicConvolve: kernel is spatially varying");
268
269 for (int cnvY = goodBBox.getMinY(); cnvY <= goodBBox.getMaxY(); ++cnvY) {
270 double const rowPos = inImage.indexToPosition(cnvY, image::Y);
271
272 InXYLocator inImLoc = inImage.xy_at(0, cnvY - goodBBox.getMinY());
273 OutXIterator cnvXIter = convolvedImage.row_begin(cnvY) + goodBBox.getMinX();
274 for (int cnvX = goodBBox.getMinX(); cnvX <= goodBBox.getMaxX();
275 ++cnvX, ++inImLoc.x(), ++cnvXIter) {
276 double const colPos = inImage.indexToPosition(cnvX, image::X);
277
278 KernelPixel kSum = kernel.computeVectors(kernelXVec, kernelYVec,
279 convolutionControl.getDoNormalize(), colPos, rowPos);
280
281 // why does this trigger warnings? It did not in the past.
282 *cnvXIter = math::convolveAtAPoint<OutImageT, InImageT>(inImLoc, kernelXVec, kernelYVec);
283 if (convolutionControl.getDoNormalize()) {
284 *cnvXIter = *cnvXIter / kSum;
285 }
286 }
287 }
288 } else {
289 // kernel is spatially invariant
290 // The basic sequence:
291 // - For each output row:
292 // - Compute x-convolved data: a kernel height's strip of input image convolved with kernel x vector
293 // - Compute one row of output by dotting each column of x-convolved data with the kernel y vector
294 // The x-convolved data is stored in a kernel-height by good-width buffer.
295 // This is circular buffer along y (to avoid shifting pixels before setting each new row);
296 // so for each new row the kernel y vector is rotated to match the order of the x-convolved data.
297
298 LOGL_DEBUG("TRACE2.lsst.afw.math.convolve.basicConvolve",
299 "SeparableKernel basicConvolve: kernel is spatially invariant");
300
301 kernel.computeVectors(kernelXVec, kernelYVec, convolutionControl.getDoNormalize());
302 KernelIterator const kernelXVecBegin = kernelXVec.begin();
303 KernelIterator const kernelYVecBegin = kernelYVec.begin();
304
305 // buffer for x-convolved data
306 OutImageT buffer(lsst::geom::Extent2I(goodBBox.getWidth(), kernel.getHeight()));
307
308 // pre-fill x-convolved data buffer with all but one row of data
309 int yInd = 0; // during initial fill bufY = inImageY
310 int const yPrefillEnd = buffer.getHeight() - 1;
311 for (; yInd < yPrefillEnd; ++yInd) {
312 OutXIterator bufXIter = buffer.x_at(0, yInd);
313 OutXIterator const bufXEnd = buffer.x_at(goodBBox.getWidth(), yInd);
314 InXIterator inXIter = inImage.x_at(0, yInd);
315 for (; bufXIter != bufXEnd; ++bufXIter, ++inXIter) {
316 *bufXIter = kernelDotProduct<OutPixel, InXIterator, KernelIterator, KernelPixel>(
317 inXIter, kernelXVecBegin, kernel.getWidth());
318 }
319 }
320
321 // compute output pixels using the sequence described above
322 int inY = yPrefillEnd;
323 int bufY = yPrefillEnd;
324 int cnvY = goodBBox.getMinY();
325 while (true) {
326 // fill next buffer row and compute output row
327 InXIterator inXIter = inImage.x_at(0, inY);
328 OutXIterator bufXIter = buffer.x_at(0, bufY);
329 OutXIterator cnvXIter = convolvedImage.x_at(goodBBox.getMinX(), cnvY);
330 for (int bufX = 0; bufX < goodBBox.getWidth(); ++bufX, ++cnvXIter, ++bufXIter, ++inXIter) {
331 // note: bufXIter points to the row of the buffer that is being updated,
332 // whereas bufYIter points to row 0 of the buffer
333 *bufXIter = kernelDotProduct<OutPixel, InXIterator, KernelIterator, KernelPixel>(
334 inXIter, kernelXVecBegin, kernel.getWidth());
335
336 OutYIterator bufYIter = buffer.y_at(bufX, 0);
337 *cnvXIter = kernelDotProduct<OutPixel, OutYIterator, KernelIterator, KernelPixel>(
338 bufYIter, kernelYVecBegin, kernel.getHeight());
339 }
340
341 // test for done now, instead of the start of the loop,
342 // to avoid an unnecessary extra rotation of the kernel Y vector
343 if (cnvY >= goodBBox.getMaxY()) break;
344
345 // update y indices, including bufY, and rotate the kernel y vector to match
346 ++inY;
347 bufY = (bufY + 1) % kernel.getHeight();
348 ++cnvY;
349 std::rotate(kernelYVec.begin(), kernelYVec.end() - 1, kernelYVec.end());
350 }
351 }
352}
353
354template <typename OutImageT, typename InImageT>
355void convolveWithBruteForce(OutImageT& convolvedImage, InImageT const& inImage, math::Kernel const& kernel,
356 math::ConvolutionControl const& convolutionControl) {
357 bool doNormalize = convolutionControl.getDoNormalize();
358
359 using KernelPixel = typename math::Kernel::Pixel;
360 using KernelImage = image::Image<KernelPixel>;
361
362 using KernelXIterator = typename KernelImage::const_x_iterator;
363 using KernelXYLocator = typename KernelImage::const_xy_locator;
364 using InXIterator = typename InImageT::const_x_iterator;
365 using InXYLocator = typename InImageT::const_xy_locator;
366 using OutXIterator = typename OutImageT::x_iterator;
367 using OutPixel = typename OutImageT::SinglePixel;
368
369 assertDimensionsOK(convolvedImage, inImage, kernel);
370
371 int const inImageWidth = inImage.getWidth();
372 int const inImageHeight = inImage.getHeight();
373 int const kWidth = kernel.getWidth();
374 int const kHeight = kernel.getHeight();
375 int const cnvWidth = inImageWidth + 1 - kernel.getWidth();
376 int const cnvHeight = inImageHeight + 1 - kernel.getHeight();
377 int const cnvStartX = kernel.getCtr().getX();
378 int const cnvStartY = kernel.getCtr().getY();
379 int const cnvEndX = cnvStartX + cnvWidth; // end index + 1
380 int const cnvEndY = cnvStartY + cnvHeight; // end index + 1
381
382 KernelImage kernelImage(kernel.getDimensions());
383 KernelXYLocator const kernelLoc = kernelImage.xy_at(0, 0);
384
385 if (kernel.isSpatiallyVarying()) {
386 LOGL_DEBUG("TRACE4.lsst.afw.math.convolve.convolveWithBruteForce",
387 "convolveWithBruteForce: kernel is spatially varying");
388
389 for (int cnvY = cnvStartY; cnvY != cnvEndY; ++cnvY) {
390 double const rowPos = inImage.indexToPosition(cnvY, image::Y);
391
392 InXYLocator inImLoc = inImage.xy_at(0, cnvY - cnvStartY);
393 OutXIterator cnvXIter = convolvedImage.x_at(cnvStartX, cnvY);
394 for (int cnvX = cnvStartX; cnvX != cnvEndX; ++cnvX, ++inImLoc.x(), ++cnvXIter) {
395 double const colPos = inImage.indexToPosition(cnvX, image::X);
396
397 KernelPixel kSum = kernel.computeImage(kernelImage, false, colPos, rowPos);
398 *cnvXIter = math::convolveAtAPoint<OutImageT, InImageT>(inImLoc, kernelLoc, kWidth, kHeight);
399 if (doNormalize) {
400 *cnvXIter = *cnvXIter / kSum;
401 }
402 }
403 }
404 } else {
405 LOGL_DEBUG("TRACE4.lsst.afw.math.convolve.convolveWithBruteForce",
406 "convolveWithBruteForce: kernel is spatially invariant");
407
408 (void)kernel.computeImage(kernelImage, doNormalize);
409
410 for (int inStartY = 0, cnvY = cnvStartY; inStartY < cnvHeight; ++inStartY, ++cnvY) {
411 KernelXIterator kernelXIter = kernelImage.x_at(0, 0);
412 InXIterator inXIter = inImage.x_at(0, inStartY);
413 OutXIterator cnvXIter = convolvedImage.x_at(cnvStartX, cnvY);
414 for (int x = 0; x < cnvWidth; ++x, ++cnvXIter, ++inXIter) {
415 *cnvXIter = kernelDotProduct<OutPixel, InXIterator, KernelXIterator, KernelPixel>(
416 inXIter, kernelXIter, kWidth);
417 }
418 for (int kernelY = 1, inY = inStartY + 1; kernelY < kHeight; ++inY, ++kernelY) {
419 KernelXIterator kernelXIter = kernelImage.x_at(0, kernelY);
420 InXIterator inXIter = inImage.x_at(0, inY);
421 OutXIterator cnvXIter = convolvedImage.x_at(cnvStartX, cnvY);
422 for (int x = 0; x < cnvWidth; ++x, ++cnvXIter, ++inXIter) {
423 *cnvXIter += kernelDotProduct<OutPixel, InXIterator, KernelXIterator, KernelPixel>(
424 inXIter, kernelXIter, kWidth);
425 }
426 }
427 }
428 }
429}
430
431/*
432 * Explicit instantiation
433 */
435#define IMAGE(PIXTYPE) image::Image<PIXTYPE>
436#define MASKEDIMAGE(PIXTYPE) image::MaskedImage<PIXTYPE, image::MaskPixel, image::VariancePixel>
437#define NL /* */
438// Instantiate Image or MaskedImage versions
439#define INSTANTIATE_IM_OR_MI(IMGMACRO, OUTPIXTYPE, INPIXTYPE) \
440 template void basicConvolve(IMGMACRO(OUTPIXTYPE)&, IMGMACRO(INPIXTYPE) const &, math::Kernel const&, \
441 math::ConvolutionControl const&); \
442 NL template void basicConvolve(IMGMACRO(OUTPIXTYPE)&, IMGMACRO(INPIXTYPE) const &, \
443 math::DeltaFunctionKernel const&, math::ConvolutionControl const&); \
444 NL template void basicConvolve(IMGMACRO(OUTPIXTYPE)&, IMGMACRO(INPIXTYPE) const &, \
445 math::LinearCombinationKernel const&, math::ConvolutionControl const&); \
446 NL template void basicConvolve(IMGMACRO(OUTPIXTYPE)&, IMGMACRO(INPIXTYPE) const &, \
447 math::SeparableKernel const&, math::ConvolutionControl const&); \
448 NL template void convolveWithBruteForce(IMGMACRO(OUTPIXTYPE)&, IMGMACRO(INPIXTYPE) const &, \
449 math::Kernel const&, math::ConvolutionControl const&);
450// Instantiate both Image and MaskedImage versions
451#define INSTANTIATE(OUTPIXTYPE, INPIXTYPE) \
452 INSTANTIATE_IM_OR_MI(IMAGE, OUTPIXTYPE, INPIXTYPE) \
453 INSTANTIATE_IM_OR_MI(MASKEDIMAGE, OUTPIXTYPE, INPIXTYPE)
454
455INSTANTIATE(double, double)
456INSTANTIATE(double, float)
457INSTANTIATE(double, int)
459INSTANTIATE(float, float)
460INSTANTIATE(float, int)
462INSTANTIATE(int, int)
465} // namespace detail
466} // namespace math
467} // namespace afw
468} // namespace lsst
#define IS_INSTANCE(A, B)
Definition Convolve.h:40
#define INSTANTIATE(FROMSYS, TOSYS)
Definition Detector.cc:509
#define LSST_EXCEPT(type,...)
Create an exception with a given type.
Definition Exception.h:48
LSST DM logging module built on log4cxx.
#define LOGL_DEBUG(logger, message...)
Log a debug-level message using a varargs/printf style interface.
Definition Log.h:515
std::ostream * os
Definition Schema.cc:557
A class to represent a 2-dimensional array of pixels.
Definition Image.h:51
Parameters to control convolution.
A kernel that has only one non-zero pixel (of value 1)
Definition Kernel.h:643
lsst::geom::Point2I getPixel() const
Definition Kernel.h:670
Kernels are used for convolution with MaskedImages and (eventually) Images.
Definition Kernel.h:110
lsst::geom::Extent2I const getDimensions() const
Return the Kernel's dimensions (width, height)
Definition Kernel.h:212
int getHeight() const
Return the Kernel's height.
Definition Kernel.h:229
lsst::geom::Point2I getCtr() const
Return index of kernel's center.
Definition Kernel.h:234
unsigned int getNKernelParameters() const
Return the number of kernel parameters (0 if none)
Definition Kernel.h:246
int getNSpatialParameters() const
Return the number of spatial parameters (0 if not spatially varying)
Definition Kernel.h:251
lsst::geom::Box2I shrinkBBox(lsst::geom::Box2I const &bbox) const
Given a bounding box for an image one wishes to convolve with this kernel, return the bounding box fo...
Definition Kernel.cc:173
int getWidth() const
Return the Kernel's width.
Definition Kernel.h:224
bool isSpatiallyVarying() const
Return true iff the kernel is spatially varying (has a spatial function)
Definition Kernel.h:333
double computeImage(lsst::afw::image::Image< Pixel > &image, bool doNormalize, double x=0.0, double y=0.0) const
Compute an image (pixellized representation of the kernel) in place.
Definition Kernel.cc:76
A kernel that is a linear combination of fixed basis kernels.
Definition Kernel.h:704
std::shared_ptr< Kernel > refactor() const
Refactor the kernel as a linear combination of N bases where N is the number of parameters for the sp...
std::shared_ptr< Kernel > clone() const override
Return a pointer to a deep copy of this kernel.
A kernel described by a pair of functions: func(x, y) = colFunc(x) * rowFunc(y)
Definition Kernel.h:860
double computeVectors(std::vector< Pixel > &colList, std::vector< Pixel > &rowList, bool doNormalize, double x=0.0, double y=0.0) const
Compute the column and row arrays in place, where kernel(col, row) = colList(col) * rowList(row)
An integer coordinate rectangle.
Definition Box.h:55
int getMinY() const noexcept
Definition Box.h:158
int getMinX() const noexcept
Definition Box.h:157
int getWidth() const noexcept
Definition Box.h:187
int getMaxX() const noexcept
Definition Box.h:161
int getMaxY() const noexcept
Definition Box.h:162
Reports invalid arguments.
Definition Runtime.h:66
void convolveWithInterpolation(OutImageT &outImage, InImageT const &inImage, lsst::afw::math::Kernel const &kernel, ConvolutionControl const &convolutionControl)
Convolve an Image or MaskedImage with a spatially varying Kernel using linear interpolation.
void basicConvolve(OutImageT &convolvedImage, InImageT const &inImage, lsst::afw::math::Kernel const &kernel, lsst::afw::math::ConvolutionControl const &convolutionControl)
Low-level convolution function that does not set edge pixels.
void convolveWithBruteForce(OutImageT &convolvedImage, InImageT const &inImage, lsst::afw::math::Kernel const &kernel, lsst::afw::math::ConvolutionControl const &convolutionControl)
Convolve an Image or MaskedImage with a Kernel by computing the kernel image at every point.
T rotate(T... args)