LSST Applications g00d0e8bbd7+edbf708997,g03191d30f7+9ce8016dbd,g1955dfad08+0bd186d245,g199a45376c+5137f08352,g1fd858c14a+a888a50aa2,g262e1987ae+45f9aba685,g29ae962dfc+1c7d47a24f,g2cef7863aa+73c82f25e4,g35bb328faa+edbf708997,g3fd5ace14f+eed17d2c67,g47891489e3+6dc8069a4c,g53246c7159+edbf708997,g64539dfbff+c4107e45b5,g67b6fd64d1+6dc8069a4c,g74acd417e5+f452e9c21a,g786e29fd12+af89c03590,g7ae74a0b1c+a25e60b391,g7aefaa3e3d+2025e9ce17,g7cc15d900a+2d158402f9,g87389fa792+a4172ec7da,g89139ef638+6dc8069a4c,g8d4809ba88+c4107e45b5,g8d7436a09f+e96c132b44,g8ea07a8fe4+db21c37724,g98df359435+aae6d409c1,ga2180abaac+edbf708997,gac66b60396+966efe6077,gb632fb1845+88945a90f8,gbaa8f7a6c5+38b34f4976,gbf99507273+edbf708997,gca7fc764a6+6dc8069a4c,gd7ef33dd92+6dc8069a4c,gda68eeecaf+7d1e613a8d,gdab6d2f7ff+f452e9c21a,gdbb4c4dda9+c4107e45b5,ge410e46f29+6dc8069a4c,ge41e95a9f2+c4107e45b5,geaed405ab2+e194be0d2b,w.2025.47
LSST Data Management Base Package
Loading...
Searching...
No Matches
ConformalShear.cc
Go to the documentation of this file.
1// -*- lsst-c++ -*-
2
3/*
4 * LSST Data Management System
5 * Copyright 2008, 2009, 2010 LSST Corporation.
6 *
7 * This product includes software developed by the
8 * LSST Project (http://www.lsst.org/).
9 *
10 * This program is free software: you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, either version 3 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the LSST License Statement and
21 * the GNU General Public License along with this program. If not,
22 * see <http://www.lsstcorp.org/LegalNotices/>.
23 */
24#include <cmath>
25
29
30namespace lsst {
31namespace afw {
32namespace geom {
33namespace ellipses {
34
36 double e = getE();
37 return std::exp(-e);
38}
39
41 double delta = other.getE();
42 if (delta < 1E-8) {
43 _complex = other.getComplex() * (1.0 + delta * delta / 3.0);
44 } else {
45 double eta = std::atanh(delta);
46 _complex = other.getComplex() * eta / delta;
47 }
48 return *this;
49}
50
52 double g = other.getE();
53 if (g < 1E-8) {
54 _complex = other.getComplex() * 2.0 * (1.0 + g * g / 3.0);
55 } else {
56 double eta = 2.0 * std::atanh(g);
57 _complex = other.getComplex() * eta / g;
58 }
59 return *this;
60}
61
63 Jacobian result = Jacobian::Zero();
64 double delta = other.getE();
65 double alpha, beta;
66 if (delta < 1E-8) {
67 alpha = 1.0 + delta * delta / 3.0;
68 beta = 2.0 / 3.0;
69 } else {
70 double eta = std::atanh(delta);
71 alpha = eta / delta;
72 beta = (1.0 / (1.0 - delta * delta) - alpha) / (delta * delta);
73 }
74 _complex = other.getComplex() * alpha;
75 result(0, 0) = alpha + other.getE1() * other.getE1() * beta;
76 result(1, 1) = alpha + other.getE2() * other.getE2() * beta;
77 result(1, 0) = result(0, 1) = other.getE1() * other.getE2() * beta;
78 return result;
79}
80
82 Jacobian result = Jacobian::Zero();
83 double g = other.getE();
84 double alpha, beta;
85 if (g < 1E-8) {
86 alpha = 2.0 * (1.0 + g * g / 3.0);
87 beta = 4.0 / 3.0;
88 } else {
89 double eta = 2.0 * std::atanh(g);
90 alpha = eta / g;
91 beta = 1.0 * (2.0 / (1.0 - g * g) - alpha) / (g * g);
92 }
93 _complex = other.getComplex() * alpha;
94 result(0, 0) = alpha + other.getE1() * other.getE1() * beta;
95 result(1, 1) = alpha + other.getE2() * other.getE2() * beta;
96 result(1, 0) = result(0, 1) = other.getE1() * other.getE2() * beta;
97 return result;
98}
99} // namespace ellipses
100} // namespace geom
101} // namespace afw
102} // namespace lsst
T atanh(T... args)
Jacobian dAssign(ConformalShear const &other)
ConformalShear & operator=(ConformalShear const &other)
ConformalShear(std::complex< double > const &complex)
A complex ellipticity with magnitude .
Definition Distortion.h:44
A complex ellipticity with magnitude .
T exp(T... args)