LSST Applications g063fba187b+cac8b7c890,g0f08755f38+6aee506743,g1653933729+a8ce1bb630,g168dd56ebc+a8ce1bb630,g1a2382251a+b4475c5878,g1dcb35cd9c+8f9bc1652e,g20f6ffc8e0+6aee506743,g217e2c1bcf+73dee94bd0,g28da252d5a+1f19c529b9,g2bbee38e9b+3f2625acfc,g2bc492864f+3f2625acfc,g3156d2b45e+6e55a43351,g32e5bea42b+1bb94961c2,g347aa1857d+3f2625acfc,g35bb328faa+a8ce1bb630,g3a166c0a6a+3f2625acfc,g3e281a1b8c+c5dd892a6c,g3e8969e208+a8ce1bb630,g414038480c+5927e1bc1e,g41af890bb2+8a9e676b2a,g7af13505b9+809c143d88,g80478fca09+6ef8b1810f,g82479be7b0+f568feb641,g858d7b2824+6aee506743,g89c8672015+f4add4ffd5,g9125e01d80+a8ce1bb630,ga5288a1d22+2903d499ea,gb58c049af0+d64f4d3760,gc28159a63d+3f2625acfc,gcab2d0539d+b12535109e,gcf0d15dbbd+46a3f46ba9,gda6a2b7d83+46a3f46ba9,gdaeeff99f8+1711a396fd,ge79ae78c31+3f2625acfc,gef2f8181fd+0a71e47438,gf0baf85859+c1f95f4921,gfa517265be+6aee506743,gfa999e8aa5+17cd334064,w.2024.51
LSST Data Management Base Package
Loading...
Searching...
No Matches
ConformalShear.cc
Go to the documentation of this file.
1// -*- lsst-c++ -*-
2
3/*
4 * LSST Data Management System
5 * Copyright 2008, 2009, 2010 LSST Corporation.
6 *
7 * This product includes software developed by the
8 * LSST Project (http://www.lsst.org/).
9 *
10 * This program is free software: you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, either version 3 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the LSST License Statement and
21 * the GNU General Public License along with this program. If not,
22 * see <http://www.lsstcorp.org/LegalNotices/>.
23 */
24#include <cmath>
25
29
30namespace lsst {
31namespace afw {
32namespace geom {
33namespace ellipses {
34
36 double e = getE();
37 return std::exp(-e);
38}
39
41 double delta = other.getE();
42 if (delta < 1E-8) {
43 _complex = other.getComplex() * (1.0 + delta * delta / 3.0);
44 } else {
45 double eta = std::atanh(delta);
46 _complex = other.getComplex() * eta / delta;
47 }
48 return *this;
49}
50
52 double g = other.getE();
53 if (g < 1E-8) {
54 _complex = other.getComplex() * 2.0 * (1.0 + g * g / 3.0);
55 } else {
56 double eta = 2.0 * std::atanh(g);
57 _complex = other.getComplex() * eta / g;
58 }
59 return *this;
60}
61
63 Jacobian result = Jacobian::Zero();
64 double delta = other.getE();
65 double alpha, beta;
66 if (delta < 1E-8) {
67 alpha = 1.0 + delta * delta / 3.0;
68 beta = 2.0 / 3.0;
69 } else {
70 double eta = std::atanh(delta);
71 alpha = eta / delta;
72 beta = (1.0 / (1.0 - delta * delta) - alpha) / (delta * delta);
73 }
74 _complex = other.getComplex() * alpha;
75 result(0, 0) = alpha + other.getE1() * other.getE1() * beta;
76 result(1, 1) = alpha + other.getE2() * other.getE2() * beta;
77 result(1, 0) = result(0, 1) = other.getE1() * other.getE2() * beta;
78 return result;
79}
80
82 Jacobian result = Jacobian::Zero();
83 double g = other.getE();
84 double alpha, beta;
85 if (g < 1E-8) {
86 alpha = 2.0 * (1.0 + g * g / 3.0);
87 beta = 4.0 / 3.0;
88 } else {
89 double eta = 2.0 * std::atanh(g);
90 alpha = eta / g;
91 beta = 1.0 * (2.0 / (1.0 - g * g) - alpha) / (g * g);
92 }
93 _complex = other.getComplex() * alpha;
94 result(0, 0) = alpha + other.getE1() * other.getE1() * beta;
95 result(1, 1) = alpha + other.getE2() * other.getE2() * beta;
96 result(1, 0) = result(0, 1) = other.getE1() * other.getE2() * beta;
97 return result;
98}
99} // namespace ellipses
100} // namespace geom
101} // namespace afw
102} // namespace lsst
py::object result
Definition _schema.cc:429
T atanh(T... args)
A logarithmic complex ellipticity with magnitude .
Jacobian dAssign(ConformalShear const &other)
ConformalShear & operator=(ConformalShear const &other)
A complex ellipticity with magnitude .
Definition Distortion.h:44
A complex ellipticity with magnitude .
T exp(T... args)