LSST Applications g042eb84c57+730a74494b,g04e9c324dd+8c5ae1fdc5,g134cb467dc+1f1e3e7524,g199a45376c+0ba108daf9,g1fd858c14a+fa7d31856b,g210f2d0738+f66ac109ec,g262e1987ae+83a3acc0e5,g29ae962dfc+d856a2cb1f,g2cef7863aa+aef1011c0b,g35bb328faa+8c5ae1fdc5,g3fd5ace14f+a1e0c9f713,g47891489e3+0d594cb711,g4d44eb3520+c57ec8f3ed,g4d7b6aa1c5+f66ac109ec,g53246c7159+8c5ae1fdc5,g56a1a4eaf3+fd7ad03fde,g64539dfbff+f66ac109ec,g67b6fd64d1+0d594cb711,g67fd3c3899+f66ac109ec,g6985122a63+0d594cb711,g74acd417e5+3098891321,g786e29fd12+668abc6043,g81db2e9a8d+98e2ab9f28,g87389fa792+8856018cbb,g89139ef638+0d594cb711,g8d7436a09f+80fda9ce03,g8ea07a8fe4+760ca7c3fc,g90f42f885a+033b1d468d,g97be763408+a8a29bda4b,g99822b682c+e3ec3c61f9,g9d5c6a246b+0d5dac0c3d,ga41d0fce20+9243b26dd2,gbf99507273+8c5ae1fdc5,gd7ef33dd92+0d594cb711,gdab6d2f7ff+3098891321,ge410e46f29+0d594cb711,geaed405ab2+c4bbc419c6,gf9a733ac38+8c5ae1fdc5,w.2025.38
LSST Data Management Base Package
Loading...
Searching...
No Matches
ConformalShear.cc
Go to the documentation of this file.
1// -*- lsst-c++ -*-
2
3/*
4 * LSST Data Management System
5 * Copyright 2008, 2009, 2010 LSST Corporation.
6 *
7 * This product includes software developed by the
8 * LSST Project (http://www.lsst.org/).
9 *
10 * This program is free software: you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, either version 3 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the LSST License Statement and
21 * the GNU General Public License along with this program. If not,
22 * see <http://www.lsstcorp.org/LegalNotices/>.
23 */
24#include <cmath>
25
29
30namespace lsst {
31namespace afw {
32namespace geom {
33namespace ellipses {
34
36 double e = getE();
37 return std::exp(-e);
38}
39
41 double delta = other.getE();
42 if (delta < 1E-8) {
43 _complex = other.getComplex() * (1.0 + delta * delta / 3.0);
44 } else {
45 double eta = std::atanh(delta);
46 _complex = other.getComplex() * eta / delta;
47 }
48 return *this;
49}
50
52 double g = other.getE();
53 if (g < 1E-8) {
54 _complex = other.getComplex() * 2.0 * (1.0 + g * g / 3.0);
55 } else {
56 double eta = 2.0 * std::atanh(g);
57 _complex = other.getComplex() * eta / g;
58 }
59 return *this;
60}
61
63 Jacobian result = Jacobian::Zero();
64 double delta = other.getE();
65 double alpha, beta;
66 if (delta < 1E-8) {
67 alpha = 1.0 + delta * delta / 3.0;
68 beta = 2.0 / 3.0;
69 } else {
70 double eta = std::atanh(delta);
71 alpha = eta / delta;
72 beta = (1.0 / (1.0 - delta * delta) - alpha) / (delta * delta);
73 }
74 _complex = other.getComplex() * alpha;
75 result(0, 0) = alpha + other.getE1() * other.getE1() * beta;
76 result(1, 1) = alpha + other.getE2() * other.getE2() * beta;
77 result(1, 0) = result(0, 1) = other.getE1() * other.getE2() * beta;
78 return result;
79}
80
82 Jacobian result = Jacobian::Zero();
83 double g = other.getE();
84 double alpha, beta;
85 if (g < 1E-8) {
86 alpha = 2.0 * (1.0 + g * g / 3.0);
87 beta = 4.0 / 3.0;
88 } else {
89 double eta = 2.0 * std::atanh(g);
90 alpha = eta / g;
91 beta = 1.0 * (2.0 / (1.0 - g * g) - alpha) / (g * g);
92 }
93 _complex = other.getComplex() * alpha;
94 result(0, 0) = alpha + other.getE1() * other.getE1() * beta;
95 result(1, 1) = alpha + other.getE2() * other.getE2() * beta;
96 result(1, 0) = result(0, 1) = other.getE1() * other.getE2() * beta;
97 return result;
98}
99} // namespace ellipses
100} // namespace geom
101} // namespace afw
102} // namespace lsst
T atanh(T... args)
Jacobian dAssign(ConformalShear const &other)
ConformalShear & operator=(ConformalShear const &other)
ConformalShear(std::complex< double > const &complex)
A complex ellipticity with magnitude .
Definition Distortion.h:44
A complex ellipticity with magnitude .
T exp(T... args)