Loading [MathJax]/extensions/tex2jax.js
LSST Applications g0fba68d861+83433b07ee,g16d25e1f1b+23bc9e47ac,g1ec0fe41b4+3ea9d11450,g1fd858c14a+9be2b0f3b9,g2440f9efcc+8c5ae1fdc5,g35bb328faa+8c5ae1fdc5,g4a4af6cd76+d25431c27e,g4d2262a081+c74e83464e,g53246c7159+8c5ae1fdc5,g55585698de+1e04e59700,g56a49b3a55+92a7603e7a,g60b5630c4e+1e04e59700,g67b6fd64d1+3fc8cb0b9e,g78460c75b0+7e33a9eb6d,g786e29fd12+668abc6043,g8352419a5c+8c5ae1fdc5,g8852436030+60e38ee5ff,g89139ef638+3fc8cb0b9e,g94187f82dc+1e04e59700,g989de1cb63+3fc8cb0b9e,g9d31334357+1e04e59700,g9f33ca652e+0a83e03614,gabe3b4be73+8856018cbb,gabf8522325+977d9fabaf,gb1101e3267+8b4b9c8ed7,gb89ab40317+3fc8cb0b9e,gc0af124501+57ccba3ad1,gcf25f946ba+60e38ee5ff,gd6cbbdb0b4+1cc2750d2e,gd794735e4e+7be992507c,gdb1c4ca869+be65c9c1d7,gde0f65d7ad+c7f52e58fe,ge278dab8ac+6b863515ed,ge410e46f29+3fc8cb0b9e,gf35d7ec915+97dd712d81,gf5e32f922b+8c5ae1fdc5,gf618743f1b+747388abfa,gf67bdafdda+3fc8cb0b9e,w.2025.18
LSST Data Management Base Package
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
KernelPca.h
Go to the documentation of this file.
1// -*- lsst-c++ -*-
11
12#ifndef LSST_IP_DIFFIM_KERNELPCA_H
13#define LSST_IP_DIFFIM_KERNELPCA_H
14
15#include "lsst/afw/image.h"
16#include "lsst/afw/math.h"
17
18namespace lsst {
19namespace ip {
20namespace diffim {
21namespace detail {
22
23 template <typename ImageT>
24 class KernelPca : public lsst::afw::image::ImagePca<ImageT> {
25 typedef typename lsst::afw::image::ImagePca<ImageT> Super;
26 public:
31
33 explicit KernelPca(bool constantWeight=true) : Super(constantWeight) {}
34
36 virtual void analyze();
37 };
38
39 template<typename PixelT>
56
57 template<typename PixelT>
62
63}}}} // end of namespace lsst::ip::diffim::detail
64
65#endif
A class to represent a 2-dimensional array of pixels.
Definition Image.h:51
void addImage(std::shared_ptr< ImageT > img, double flux=0.0)
Add an image to the set to be analyzed.
Definition ImagePca.cc:64
ImageList const & getEigenImages() const
Return Eigen images.
Definition ImagePca.h:100
std::vector< double > const & getEigenValues() const
Return Eigen values.
Definition ImagePca.h:98
Base class for candidate objects in a SpatialCell.
Definition SpatialCell.h:70
Overrides the analyze method of base class afwImage::ImagePca.
Definition KernelPca.h:24
KernelPca(bool constantWeight=true)
Ctor.
Definition KernelPca.h:33
virtual void analyze()
Generate eigenimages that are normalised.
Definition KernelPca.cc:163
std::shared_ptr< KernelPca< ImageT > > Ptr
Definition KernelPca.h:27
A class to run a PCA on all candidate kernels (represented as Images).
Definition KernelPca.h:40
std::shared_ptr< KernelPcaVisitor< PixelT > > Ptr
Definition KernelPca.h:43
void processCandidate(lsst::afw::math::SpatialCellCandidate *candidate)
Definition KernelPca.cc:89
std::shared_ptr< ImageT > returnMean()
Definition KernelPca.h:51
lsst::afw::math::KernelList getEigenKernels()
Definition KernelPca.cc:65
KernelPcaVisitor(std::shared_ptr< KernelPca< ImageT > > imagePca)
Definition KernelPca.cc:56
lsst::afw::image::Image< lsst::afw::math::Kernel::Pixel > ImageT
Definition KernelPca.h:42
std::vector< std::shared_ptr< Kernel > > KernelList
Definition Kernel.h:462
std::shared_ptr< KernelPcaVisitor< PixelT > > makeKernelPcaVisitor(std::shared_ptr< KernelPca< typename KernelPcaVisitor< PixelT >::ImageT > > imagePca)
Definition KernelPca.h:59