LSST Applications g063fba187b+cac8b7c890,g0f08755f38+6aee506743,g1653933729+a8ce1bb630,g168dd56ebc+a8ce1bb630,g1a2382251a+b4475c5878,g1dcb35cd9c+8f9bc1652e,g20f6ffc8e0+6aee506743,g217e2c1bcf+73dee94bd0,g28da252d5a+1f19c529b9,g2bbee38e9b+3f2625acfc,g2bc492864f+3f2625acfc,g3156d2b45e+6e55a43351,g32e5bea42b+1bb94961c2,g347aa1857d+3f2625acfc,g35bb328faa+a8ce1bb630,g3a166c0a6a+3f2625acfc,g3e281a1b8c+c5dd892a6c,g3e8969e208+a8ce1bb630,g414038480c+5927e1bc1e,g41af890bb2+8a9e676b2a,g7af13505b9+809c143d88,g80478fca09+6ef8b1810f,g82479be7b0+f568feb641,g858d7b2824+6aee506743,g89c8672015+f4add4ffd5,g9125e01d80+a8ce1bb630,ga5288a1d22+2903d499ea,gb58c049af0+d64f4d3760,gc28159a63d+3f2625acfc,gcab2d0539d+b12535109e,gcf0d15dbbd+46a3f46ba9,gda6a2b7d83+46a3f46ba9,gdaeeff99f8+1711a396fd,ge79ae78c31+3f2625acfc,gef2f8181fd+0a71e47438,gf0baf85859+c1f95f4921,gfa517265be+6aee506743,gfa999e8aa5+17cd334064,w.2024.51
LSST Data Management Base Package
Loading...
Searching...
No Matches
PolynomialFunction1d.cc
Go to the documentation of this file.
1// -*- LSST-C++ -*-
2/*
3 * Developed for the LSST Data Management System.
4 * This product includes software developed by the LSST Project
5 * (https://www.lsst.org).
6 * See the COPYRIGHT file at the top-level directory of this distribution
7 * for details of code ownership.
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <https://www.gnu.org/licenses/>.
21 */
22
23#include <vector>
24
28
29
30namespace lsst { namespace geom { namespace polynomials {
31
33 auto const & basis = f.getBasis();
35 double const s = basis.getScaling().getScale();
36 double const v = basis.getScaling().getShift();
37 double sn = 1; // s^n
38 BinomialMatrix binomial(basis.getNested().getOrder());
39 for (std::size_t n = 0; n < basis.size(); ++n, sn *= s) {
40 double vk = 1; // v^k
41 for (std::size_t k = 0; k <= n; ++k, vk *= v) {
42 sums[n - k] += sn*binomial(n, k)*f[n]*vk;
43 }
44 }
45 Eigen::VectorXd result = Eigen::VectorXd::Zero(basis.size());
46 for (std::size_t n = 0; n < basis.size(); ++n) {
47 result[n] = static_cast<double>(sums[n]);
48 }
49 return makeFunction1d(basis.getNested(), result);
50}
51
52}}} // namespace lsst::geom::polynomials
py::object result
Definition _schema.cc:429
A class that computes binomial coefficients up to a certain power.
A 1-d function defined by a series expansion and its coefficients.
Definition Function1d.h:42
Basis const & getBasis() const
Return the associated Basis1d object.
Definition Function1d.h:98
Function1d< Basis > makeFunction1d(Basis const &basis, Eigen::VectorXd const &coefficients)
Create a Function1d of the appropriate type from a Basis1d and an Eigen object containing coefficient...
Definition Function1d.h:144
PolynomialFunction1d simplified(ScaledPolynomialFunction1d const &f)
Calculate the standard polynomial function that is equivalent to a scaled standard polynomial functio...
table::Key< table::Array< double > > basis
Definition PsfexPsf.cc:365