LSST Applications g04e9c324dd+8c5ae1fdc5,g134cb467dc+b203dec576,g18429d2f64+358861cd2c,g199a45376c+0ba108daf9,g1fd858c14a+dd066899e3,g262e1987ae+ebfced1d55,g29ae962dfc+72fd90588e,g2cef7863aa+aef1011c0b,g35bb328faa+8c5ae1fdc5,g3fd5ace14f+b668f15bc5,g4595892280+3897dae354,g47891489e3+abcf9c3559,g4d44eb3520+fb4ddce128,g53246c7159+8c5ae1fdc5,g67b6fd64d1+abcf9c3559,g67fd3c3899+1f72b5a9f7,g74acd417e5+cb6b47f07b,g786e29fd12+668abc6043,g87389fa792+8856018cbb,g89139ef638+abcf9c3559,g8d7436a09f+bcf525d20c,g8ea07a8fe4+9f5ccc88ac,g90f42f885a+6054cc57f1,g97be763408+06f794da49,g9dd6db0277+1f72b5a9f7,ga681d05dcb+7e36ad54cd,gabf8522325+735880ea63,gac2eed3f23+abcf9c3559,gb89ab40317+abcf9c3559,gbf99507273+8c5ae1fdc5,gd8ff7fe66e+1f72b5a9f7,gdab6d2f7ff+cb6b47f07b,gdc713202bf+1f72b5a9f7,gdfd2d52018+8225f2b331,ge365c994fd+375fc21c71,ge410e46f29+abcf9c3559,geaed405ab2+562b3308c0,gf9a733ac38+8c5ae1fdc5,w.2025.35
LSST Data Management Base Package
Loading...
Searching...
No Matches
ScaledBasis2d.h
Go to the documentation of this file.
1// -*- LSST-C++ -*-
2/*
3 * Developed for the LSST Data Management System.
4 * This product includes software developed by the LSST Project
5 * (https://www.lsst.org).
6 * See the COPYRIGHT file at the top-level directory of this distribution
7 * for details of code ownership.
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <https://www.gnu.org/licenses/>.
21 */
22#ifndef LSST_AFW_MATH_POLYNOMIALS_ScaledBasis2d_h_INCLUDED
23#define LSST_AFW_MATH_POLYNOMIALS_ScaledBasis2d_h_INCLUDED
24
26
27namespace lsst { namespace geom { namespace polynomials {
28
29template <typename Basis>
30class Function2d;
31
42template <typename Nested>
44public:
45
48
51
53 using Workspace = typename Nested::Workspace;
54
56 using IndexRange = typename Nested::IndexRange;
57
59 explicit ScaledBasis2d(Nested const & nested, Scaling2d const & scaling) :
60 _nested(nested),
61 _scaling(scaling)
62 {}
63
77 ScaledBasis2d(std::size_t order, Box2D const & box) :
78 _nested(order),
79 _scaling(makeUnitRangeScaling2d(box))
80 {}
81
83 ScaledBasis2d(ScaledBasis2d const &) = default;
84
87
90
93
95 Nested const & getNested() const noexcept { return _nested; }
96
98 Scaling2d const & getScaling() const noexcept { return _scaling; }
99
101 std::size_t getOrder() const { return getNested().getOrder(); }
102
104 std::size_t size() const { return getNested().size(); }
105
112 Scaled scaled(Scaling2d const & first) const {
113 return getNested().scaled(first.then(getScaling()));
114 }
115
117 int index(int x, int y) const { return getNested().index(x, y); }
118
139 IndexRange getIndices() const { return getNested().getIndices(); }
140
142 Workspace makeWorkspace() const { return getNested().makeWorkspace();}
143
162 template <typename Vector>
163 double sumWith(geom::Point2D const & point, Vector const & coefficients,
164 SumMode mode=SumMode::FAST) const {
165 return getNested().sumWith(getScaling().applyForward(point), coefficients, mode);
166 }
167
169 template <typename Vector>
170 double sumWith(geom::Point2D const & point, Vector const & coefficients,
171 Workspace & workspace, SumMode mode=SumMode::FAST) const {
172 return getNested().sumWith(getScaling().applyForward(point), coefficients, workspace, mode);
173 }
174
185 template <typename Vector>
186 void fill(geom::Point2D const & point, Vector && basis) const {
187 return getNested().fill(getScaling().applyForward(point),
188 std::forward<Vector>(basis));
189 }
190
192 template <typename Vector>
193 void fill(geom::Point2D const & point, Vector && basis, Workspace & workspace) const {
194 return getNested().fill(getScaling().applyForward(point),
196 workspace);
197 }
198
199private:
200 Nested _nested;
201 Scaling2d _scaling;
202};
203
204}}} // namespace lsst::geom::polynomials
205
206#endif // !LSST_AFW_MATH_POLYNOMIALS_ScaledBasis2d_h_INCLUDED
A floating-point coordinate rectangle geometry.
Definition Box.h:413
A 2-d function defined by a series expansion and its coefficients.
Definition Function2d.h:42
double sumWith(geom::Point2D const &point, Vector const &coefficients, Workspace &workspace, SumMode mode=SumMode::FAST) const
void fill(geom::Point2D const &point, Vector &&basis, Workspace &workspace) const
ScaledBasis2d(Nested const &nested, Scaling2d const &scaling)
Construct a scaled basis from a nested basis and a scaling transform.
Chebyshev1Basis2d< packing > const & getNested() const noexcept
void fill(geom::Point2D const &point, Vector &&basis) const
ScaledBasis2d & operator=(ScaledBasis2d const &)=default
double sumWith(geom::Point2D const &point, Vector const &coefficients, SumMode mode=SumMode::FAST) const
A 2-d separable affine transform that can be used to map one interval to another.
Definition Scaling2d.h:48
T forward(T... args)
Low-level polynomials (including special polynomials) in C++.
Scaling2d makeUnitRangeScaling2d(geom::Box2D const &box)
Return a Scaling1d that maps the given box to [-1, 1]x[-1, 1].
Definition Scaling2d.h:112
SumMode
Enum used to control how to sum polynomial terms.
Definition SafeSum.h:32
@ FAST
Summation using regular floating-point addition.
Definition SafeSum.h:34
Point< double, 2 > Point2D
Definition Point.h:324