LSST Applications g00d0e8bbd7+edbf708997,g03191d30f7+9ce8016dbd,g1955dfad08+0bd186d245,g199a45376c+5137f08352,g1fd858c14a+a888a50aa2,g262e1987ae+45f9aba685,g29ae962dfc+1c7d47a24f,g2cef7863aa+73c82f25e4,g35bb328faa+edbf708997,g3fd5ace14f+eed17d2c67,g47891489e3+6dc8069a4c,g53246c7159+edbf708997,g64539dfbff+c4107e45b5,g67b6fd64d1+6dc8069a4c,g74acd417e5+f452e9c21a,g786e29fd12+af89c03590,g7ae74a0b1c+a25e60b391,g7aefaa3e3d+2025e9ce17,g7cc15d900a+2d158402f9,g87389fa792+a4172ec7da,g89139ef638+6dc8069a4c,g8d4809ba88+c4107e45b5,g8d7436a09f+e96c132b44,g8ea07a8fe4+db21c37724,g98df359435+aae6d409c1,ga2180abaac+edbf708997,gac66b60396+966efe6077,gb632fb1845+88945a90f8,gbaa8f7a6c5+38b34f4976,gbf99507273+edbf708997,gca7fc764a6+6dc8069a4c,gd7ef33dd92+6dc8069a4c,gda68eeecaf+7d1e613a8d,gdab6d2f7ff+f452e9c21a,gdbb4c4dda9+c4107e45b5,ge410e46f29+6dc8069a4c,ge41e95a9f2+c4107e45b5,geaed405ab2+e194be0d2b,w.2025.47
LSST Data Management Base Package
Loading...
Searching...
No Matches
ScaledBasis2d.h
Go to the documentation of this file.
1// -*- LSST-C++ -*-
2/*
3 * Developed for the LSST Data Management System.
4 * This product includes software developed by the LSST Project
5 * (https://www.lsst.org).
6 * See the COPYRIGHT file at the top-level directory of this distribution
7 * for details of code ownership.
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <https://www.gnu.org/licenses/>.
21 */
22#ifndef LSST_AFW_MATH_POLYNOMIALS_ScaledBasis2d_h_INCLUDED
23#define LSST_AFW_MATH_POLYNOMIALS_ScaledBasis2d_h_INCLUDED
24
26
27namespace lsst { namespace geom { namespace polynomials {
28
29template <typename Basis>
30class Function2d;
31
42template <typename Nested>
44public:
45
48
51
53 using Workspace = typename Nested::Workspace;
54
56 using IndexRange = typename Nested::IndexRange;
57
59 explicit ScaledBasis2d(Nested const & nested, Scaling2d const & scaling) :
60 _nested(nested),
61 _scaling(scaling)
62 {}
63
77 ScaledBasis2d(std::size_t order, Box2D const & box) :
78 _nested(order),
79 _scaling(makeUnitRangeScaling2d(box))
80 {}
81
83 ScaledBasis2d(ScaledBasis2d const &) = default;
84
87
90
93
95 Nested const & getNested() const noexcept { return _nested; }
96
98 Scaling2d const & getScaling() const noexcept { return _scaling; }
99
101 std::size_t getOrder() const { return getNested().getOrder(); }
102
104 std::size_t size() const { return getNested().size(); }
105
112 Scaled scaled(Scaling2d const & first) const {
113 return getNested().scaled(first.then(getScaling()));
114 }
115
117 int index(int x, int y) const { return getNested().index(x, y); }
118
139 IndexRange getIndices() const { return getNested().getIndices(); }
140
142 Workspace makeWorkspace() const { return getNested().makeWorkspace();}
143
162 template <typename Vector>
163 double sumWith(geom::Point2D const & point, Vector const & coefficients,
164 SumMode mode=SumMode::FAST) const {
165 return getNested().sumWith(getScaling().applyForward(point), coefficients, mode);
166 }
167
169 template <typename Vector>
170 double sumWith(geom::Point2D const & point, Vector const & coefficients,
171 Workspace & workspace, SumMode mode=SumMode::FAST) const {
172 return getNested().sumWith(getScaling().applyForward(point), coefficients, workspace, mode);
173 }
174
185 template <typename Vector>
186 void fill(geom::Point2D const & point, Vector && basis) const {
187 return getNested().fill(getScaling().applyForward(point),
188 std::forward<Vector>(basis));
189 }
190
192 template <typename Vector>
193 void fill(geom::Point2D const & point, Vector && basis, Workspace & workspace) const {
194 return getNested().fill(getScaling().applyForward(point),
196 workspace);
197 }
198
199private:
200 Nested _nested;
201 Scaling2d _scaling;
202};
203
204}}} // namespace lsst::geom::polynomials
205
206#endif // !LSST_AFW_MATH_POLYNOMIALS_ScaledBasis2d_h_INCLUDED
A floating-point coordinate rectangle geometry.
Definition Box.h:413
A 2-d function defined by a series expansion and its coefficients.
Definition Function2d.h:42
double sumWith(geom::Point2D const &point, Vector const &coefficients, Workspace &workspace, SumMode mode=SumMode::FAST) const
void fill(geom::Point2D const &point, Vector &&basis, Workspace &workspace) const
ScaledBasis2d(Nested const &nested, Scaling2d const &scaling)
Construct a scaled basis from a nested basis and a scaling transform.
Chebyshev1Basis2d< packing > const & getNested() const noexcept
void fill(geom::Point2D const &point, Vector &&basis) const
ScaledBasis2d & operator=(ScaledBasis2d const &)=default
double sumWith(geom::Point2D const &point, Vector const &coefficients, SumMode mode=SumMode::FAST) const
A 2-d separable affine transform that can be used to map one interval to another.
Definition Scaling2d.h:48
T forward(T... args)
Low-level polynomials (including special polynomials) in C++.
Scaling2d makeUnitRangeScaling2d(geom::Box2D const &box)
Return a Scaling1d that maps the given box to [-1, 1]x[-1, 1].
Definition Scaling2d.h:112
SumMode
Enum used to control how to sum polynomial terms.
Definition SafeSum.h:32
@ FAST
Summation using regular floating-point addition.
Definition SafeSum.h:34
Point< double, 2 > Point2D
Definition Point.h:324