LSST Applications g0f08755f38+82efc23009,g12f32b3c4e+e7bdf1200e,g1653933729+a8ce1bb630,g1a0ca8cf93+50eff2b06f,g28da252d5a+52db39f6a5,g2bbee38e9b+37c5a29d61,g2bc492864f+37c5a29d61,g2cdde0e794+c05ff076ad,g3156d2b45e+41e33cbcdc,g347aa1857d+37c5a29d61,g35bb328faa+a8ce1bb630,g3a166c0a6a+37c5a29d61,g3e281a1b8c+fb992f5633,g414038480c+7f03dfc1b0,g41af890bb2+11b950c980,g5fbc88fb19+17cd334064,g6b1c1869cb+12dd639c9a,g781aacb6e4+a8ce1bb630,g80478fca09+72e9651da0,g82479be7b0+04c31367b4,g858d7b2824+82efc23009,g9125e01d80+a8ce1bb630,g9726552aa6+8047e3811d,ga5288a1d22+e532dc0a0b,gae0086650b+a8ce1bb630,gb58c049af0+d64f4d3760,gc28159a63d+37c5a29d61,gcf0d15dbbd+2acd6d4d48,gd7358e8bfb+778a810b6e,gda3e153d99+82efc23009,gda6a2b7d83+2acd6d4d48,gdaeeff99f8+1711a396fd,ge2409df99d+6b12de1076,ge79ae78c31+37c5a29d61,gf0baf85859+d0a5978c5a,gf3967379c6+4954f8c433,gfb92a5be7c+82efc23009,gfec2e1e490+2aaed99252,w.2024.46
LSST Data Management Base Package
Loading...
Searching...
No Matches
How to manipulate images from python

How to manipulate images from python

You can use the C++ APIs to manipulate images and bits of images from python, e.g.

import lsst.afw.geom as afwGeom
import lsst.afw.image as afwImage
im = afwImage.ImageF(10, 20)
bbox = afwGeom.BoxI(afwGeom.PointI(1, 2), afwGeom.ExtentI(4, 6))
sim = im.Factory(im, bbox)
sim.set(100)
del sim

sets a 4x10 portion of image im to 100 (I used im.Factory to avoid repeating afwImage.ImageF, rendering the code non-generic). I can't simply say sim = 100 as that'd make sim an integer rather than setting the pixel values to 100. I used an Image, but a Mask or a MaskedImage would work too (and I can create a sub-Exposure, although I can't assign to it).

This syntax gets boring fast.

We accordingly added some syntactic sugar at the swig level. I can write the preceeding example as:

im[1:5, 2:8] = 100

i.e. create a subimage and assign to it. afw's image slices are always shallow (but you can clone them as we shall see).

Note that the order is [x, y]**. This is consistent with our C++ code (e.g. it's PointI(x, y)), but different from numpy's matrix-like [row, column].

This opens up various possiblities; the following all work:

im[-1, :] = -5
im[..., 18] = -5 # the same as im[:, 18]
im[4, 10] = 10
im[-3:, -2:] = 100
im[-2, -2] = -10
sim = im[1:4, 6:10]
sim[:] = -1
im[0:4, 0:4] = im[2:6, 8:12]

You might expect to be able to say print im[0,20] but you won't get what you expect (it's an image, not a pixel value); say print float(im[0,20]) instead.

The one remaining thing that you can't do it make a deep copy (the left-hand-side has to pre-exist), but fortunately

im2 = im[0:3, 0:5].clone()

works.

numpy

You will remember that the previous section used [x, y] whereas numpy uses [row, column] which is different; you have been warned.

You can achieve similar effects using numpy. For example, after creating im as above, I can use getArray to return a view of the image (i.e. the numpy object shares memory with the C++ object), so:

import numpy as np
nim = im.getArray()
nim[1:5, 2:8] = 100

will also set a sub-image's value (but a different sub-image from im[1:5, 2:8]). You can do more complex operations using numpy syntax, e.g.

nim = im.getArray()
nim[:] = 100 + np.sin(nim) - 2*nim

which is very convenient, although there's a good chance that you'll be creating temporaries the size of im.