|
LSST Applications g00d0e8bbd7+edbf708997,g03191d30f7+9ce8016dbd,g1955dfad08+0bd186d245,g199a45376c+5137f08352,g1fd858c14a+a888a50aa2,g262e1987ae+45f9aba685,g29ae962dfc+1c7d47a24f,g2cef7863aa+73c82f25e4,g35bb328faa+edbf708997,g3fd5ace14f+eed17d2c67,g47891489e3+6dc8069a4c,g53246c7159+edbf708997,g64539dfbff+c4107e45b5,g67b6fd64d1+6dc8069a4c,g74acd417e5+f452e9c21a,g786e29fd12+af89c03590,g7ae74a0b1c+a25e60b391,g7aefaa3e3d+2025e9ce17,g7cc15d900a+2d158402f9,g87389fa792+a4172ec7da,g89139ef638+6dc8069a4c,g8d4809ba88+c4107e45b5,g8d7436a09f+e96c132b44,g8ea07a8fe4+db21c37724,g98df359435+aae6d409c1,ga2180abaac+edbf708997,gac66b60396+966efe6077,gb632fb1845+88945a90f8,gbaa8f7a6c5+38b34f4976,gbf99507273+edbf708997,gca7fc764a6+6dc8069a4c,gd7ef33dd92+6dc8069a4c,gda68eeecaf+7d1e613a8d,gdab6d2f7ff+f452e9c21a,gdbb4c4dda9+c4107e45b5,ge410e46f29+6dc8069a4c,ge41e95a9f2+c4107e45b5,geaed405ab2+e194be0d2b,w.2025.47
LSST Data Management Base Package
|
You can use the C++ APIs to manipulate images and bits of images from python, e.g.
sets a 4x10 portion of image im to 100 (I used im.Factory to avoid repeating afwImage.ImageF, rendering the code non-generic). I can't simply say sim = 100 as that'd make sim an integer rather than setting the pixel values to 100. I used an Image, but a Mask or a MaskedImage would work too (and I can create a sub-Exposure, although I can't assign to it).
This syntax gets boring fast.
We accordingly added some syntactic sugar at the swig level. I can write the preceeding example as:
i.e. create a subimage and assign to it. afw's image slices are always shallow (but you can clone them as we shall see).
Note that the order is [x, y]**. This is consistent with our C++ code (e.g. it's PointI(x, y)), but different from numpy's matrix-like [row, column].
This opens up various possiblities; the following all work:
You might expect to be able to say print im[0,20] but you won't get what you expect (it's an image, not a pixel value); say print float(im[0,20]) instead.
The one remaining thing that you can't do it make a deep copy (the left-hand-side has to pre-exist), but fortunately
works.
You will remember that the previous section used [x, y] whereas numpy uses [row, column] which is different; you have been warned.
You can achieve similar effects using numpy. For example, after creating im as above, I can use getArray to return a view of the image (i.e. the numpy object shares memory with the C++ object), so:
will also set a sub-image's value (but a different sub-image from im[1:5, 2:8]). You can do more complex operations using numpy syntax, e.g.
which is very convenient, although there's a good chance that you'll be creating temporaries the size of im.