LSST Applications g180d380827+770a9040cc,g2079a07aa2+86d27d4dc4,g2305ad1205+09cfdadad9,g2bbee38e9b+c6a8a0fb72,g337abbeb29+c6a8a0fb72,g33d1c0ed96+c6a8a0fb72,g3a166c0a6a+c6a8a0fb72,g3ddfee87b4+1ea5e09c42,g48712c4677+7e2ea9cd42,g487adcacf7+301d09421d,g50ff169b8f+96c6868917,g52b1c1532d+585e252eca,g591dd9f2cf+96fcb956a6,g64a986408d+23540ee355,g858d7b2824+23540ee355,g864b0138d7+aa38e45daa,g95921f966b+d83dc58ecd,g991b906543+23540ee355,g99cad8db69+7f13b58a93,g9c22b2923f+e2510deafe,g9ddcbc5298+9a081db1e4,ga1e77700b3+03d07e1c1f,gb0e22166c9+60f28cb32d,gb23b769143+23540ee355,gba4ed39666+c2a2e4ac27,gbb8dafda3b+49e7449578,gbd998247f1+585e252eca,gc120e1dc64+1bbfa184e1,gc28159a63d+c6a8a0fb72,gc3e9b769f7+385ea95214,gcf0d15dbbd+1ea5e09c42,gdaeeff99f8+f9a426f77a,ge6526c86ff+1bccc98490,ge79ae78c31+c6a8a0fb72,gee10cc3b42+585e252eca,w.2024.18
LSST Data Management Base Package
Loading...
Searching...
No Matches
How to manipulate images from python

How to manipulate images from python

You can use the C++ APIs to manipulate images and bits of images from python, e.g.

import lsst.afw.geom as afwGeom
import lsst.afw.image as afwImage
im = afwImage.ImageF(10, 20)
bbox = afwGeom.BoxI(afwGeom.PointI(1, 2), afwGeom.ExtentI(4, 6))
sim = im.Factory(im, bbox)
sim.set(100)
del sim

sets a 4x10 portion of image im to 100 (I used im.Factory to avoid repeating afwImage.ImageF, rendering the code non-generic). I can't simply say sim = 100 as that'd make sim an integer rather than setting the pixel values to 100. I used an Image, but a Mask or a MaskedImage would work too (and I can create a sub-Exposure, although I can't assign to it).

This syntax gets boring fast.

We accordingly added some syntactic sugar at the swig level. I can write the preceeding example as:

im[1:5, 2:8] = 100

i.e. create a subimage and assign to it. afw's image slices are always shallow (but you can clone them as we shall see).

Note that the order is [x, y]**. This is consistent with our C++ code (e.g. it's PointI(x, y)), but different from numpy's matrix-like [row, column].

This opens up various possiblities; the following all work:

im[-1, :] = -5
im[..., 18] = -5 # the same as im[:, 18]
im[4, 10] = 10
im[-3:, -2:] = 100
im[-2, -2] = -10
sim = im[1:4, 6:10]
sim[:] = -1
im[0:4, 0:4] = im[2:6, 8:12]

You might expect to be able to say print im[0,20] but you won't get what you expect (it's an image, not a pixel value); say print float(im[0,20]) instead.

The one remaining thing that you can't do it make a deep copy (the left-hand-side has to pre-exist), but fortunately

im2 = im[0:3, 0:5].clone()

works.

numpy

You will remember that the previous section used [x, y] whereas numpy uses [row, column] which is different; you have been warned.

You can achieve similar effects using numpy. For example, after creating im as above, I can use getArray to return a view of the image (i.e. the numpy object shares memory with the C++ object), so:

import numpy as np
nim = im.getArray()
nim[1:5, 2:8] = 100

will also set a sub-image's value (but a different sub-image from im[1:5, 2:8]). You can do more complex operations using numpy syntax, e.g.

nim = im.getArray()
nim[:] = 100 + np.sin(nim) - 2*nim

which is very convenient, although there's a good chance that you'll be creating temporaries the size of im.