LSST Applications g063fba187b+cac8b7c890,g0f08755f38+6aee506743,g1653933729+a8ce1bb630,g168dd56ebc+a8ce1bb630,g1a2382251a+b4475c5878,g1dcb35cd9c+8f9bc1652e,g20f6ffc8e0+6aee506743,g217e2c1bcf+73dee94bd0,g28da252d5a+1f19c529b9,g2bbee38e9b+3f2625acfc,g2bc492864f+3f2625acfc,g3156d2b45e+6e55a43351,g32e5bea42b+1bb94961c2,g347aa1857d+3f2625acfc,g35bb328faa+a8ce1bb630,g3a166c0a6a+3f2625acfc,g3e281a1b8c+c5dd892a6c,g3e8969e208+a8ce1bb630,g414038480c+5927e1bc1e,g41af890bb2+8a9e676b2a,g7af13505b9+809c143d88,g80478fca09+6ef8b1810f,g82479be7b0+f568feb641,g858d7b2824+6aee506743,g89c8672015+f4add4ffd5,g9125e01d80+a8ce1bb630,ga5288a1d22+2903d499ea,gb58c049af0+d64f4d3760,gc28159a63d+3f2625acfc,gcab2d0539d+b12535109e,gcf0d15dbbd+46a3f46ba9,gda6a2b7d83+46a3f46ba9,gdaeeff99f8+1711a396fd,ge79ae78c31+3f2625acfc,gef2f8181fd+0a71e47438,gf0baf85859+c1f95f4921,gfa517265be+6aee506743,gfa999e8aa5+17cd334064,w.2024.51
LSST Data Management Base Package
Loading...
Searching...
No Matches
bbox.py
Go to the documentation of this file.
1# This file is part of scarlet_lite.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
21
22from __future__ import annotations
23
24__all__ = ["Box", "overlapped_slices"]
25
26from typing import Sequence, cast
27
28import numpy as np
29
30
31class Box:
32 """Bounding Box for an object
33
34 A Bounding box describes the location of a data unit in the
35 global/model coordinate system, using the row-major
36 (default numpy/C++) ordering convention.
37 So, for example, a 2D image will have shape ``(height, width)``,
38 however the bounding `Box` code is agnostic as to number of dimensions
39 or the meaning of those dimensions.
40
41 Examples
42 --------
43
44 At a minimum a new `Box` can be initialized using the ``shape`` of the
45 region it describes:
46
47 >>> from lsst.scarlet.lite import Box
48 >>> bbox = Box((3, 4, 5, 6))
49 >>> print(bbox)
50 Box(shape=(3, 4, 5, 6), origin=(0, 0, 0, 0))
51
52 If the region described by the `Box` is offset from the zero origin,
53 a new ``origin`` can be passed to the constructor
54
55 >>> bbox = Box((3, 4, 5, 6), (2, 4, 7, 9))
56 >>> print(bbox)
57 Box(shape=(3, 4, 5, 6), origin=(2, 4, 7, 9))
58
59 It is also possible to initialize a `Box` from a collection of tuples,
60 where tuple is a pair of integers representing the
61 first and last index in each dimension. For example:
62
63 >>> bbox = Box.from_bounds((3, 6), (11, 21))
64 >>> print(bbox)
65 Box(shape=(3, 10), origin=(3, 11))
66
67 It is also possible to initialize a `Box` by thresholding a numpy array
68 and including only the region of the image above the threshold in the
69 resulting `Box`. For example
70
71 >>> from lsst.scarlet.lite.utils import integrated_circular_gaussian
72 >>> data = integrated_circular_gaussian(sigma=1.0)
73 >>> bbox = Box.from_data(data, 1e-2)
74 >>> print(bbox)
75 Box(shape=(5, 5), origin=(5, 5))
76
77 The `Box` class contains a number of convenience methods that can be used
78 to extract subsets of an array, combine bounding boxes, etc.
79
80 For example, using the ``data`` and ``bbox`` from the end of the previous
81 section, the portion of the data array that is contained in the bounding
82 box can be extraced usng the `Box.slices` method:
83
84 >>> subset = data[bbox.slices]
85
86 The intersection of two boxes can be calcualted using the ``&`` operator,
87 for example
88
89 >>> bbox = Box((5, 5)) & Box((5, 5), (2, 2))
90 >>> print(bbox)
91 Box(shape=(3, 3), origin=(2, 2))
92
93 Similarly, the union of two boxes can be calculated using the ``|``
94 operator:
95
96 >>> bbox = Box((5, 5)) | Box((5, 5), (2, 2))
97 >>> print(bbox)
98 Box(shape=(7, 7), origin=(0, 0))
99
100 To find out of a point is located in a `Box` use
101
102 >>> contains = bbox.contains((3, 3))
103 >>> print(contains)
104 True
105
106 To find out if two boxes intersect (in other words ``box1 & box2`` has a
107 non-zero size) use
108
109 >>> intersects = bbox.intersects(Box((10, 10), (100, 100)))
110 >>> print(intersects)
111 False
112
113 It is also possible to shift a box by a vector (sequence):
114
115 >>> bbox = bbox + (50, 60)
116 >>> print(bbox)
117 Box(shape=(7, 7), origin=(50, 60))
118
119 which can also be negative
120
121 >>> bbox = bbox - (5, -5)
122 >>> print(bbox)
123 Box(shape=(7, 7), origin=(45, 65))
124
125 Boxes can also be converted into higher dimensions using the
126 ``@`` operator:
127
128 >>> bbox1 = Box((10,), (3, ))
129 >>> bbox2 = Box((101, 201), (18, 21))
130 >>> bbox = bbox1 @ bbox2
131 >>> print(bbox)
132 Box(shape=(10, 101, 201), origin=(3, 18, 21))
133
134 Boxes are equal when they have the same shape and the same origin, so
135
136 >>> print(Box((10, 10), (5, 5)) == Box((10, 10), (5, 5)))
137 True
138
139 >>> print(Box((10, 10), (5, 5)) == Box((10, 10), (4, 4)))
140 False
141
142 Finally, it is common to insert one array into another when their bounding
143 boxes only partially overlap.
144 In order to correctly insert the overlapping portion of the array it is
145 convenient to calculate the slices from each array that overlap.
146 For example:
147
148 >>> import numpy as np
149 >>> x = np.arange(12).reshape(3, 4)
150 >>> y = np.arange(9).reshape(3, 3)
151 >>> print(x)
152 [[ 0 1 2 3]
153 [ 4 5 6 7]
154 [ 8 9 10 11]]
155 >>> print(y)
156 [[0 1 2]
157 [3 4 5]
158 [6 7 8]]
159 >>> x_box = Box.from_data(x) + (3, 4)
160 >>> y_box = Box.from_data(y) + (1, 3)
161 >>> slices = x_box.overlapped_slices(y_box)
162 >>> x[slices[0]] += y[slices[1]]
163 >>> print(x)
164 [[ 7 9 2 3]
165 [ 4 5 6 7]
166 [ 8 9 10 11]]
167
168 Parameters
169 ----------
170 shape:
171 Size of the box in each dimension.
172 origin:
173 Minimum corner coordinate of the box.
174 This defaults to ``(0, ...)``.
175 """
176
177 def __init__(self, shape: tuple[int, ...], origin: tuple[int, ...] | None = None):
178 self.shape = tuple(shape)
179 if origin is None:
180 origin = (0,) * len(shape)
181 if len(origin) != len(shape):
182 msg = "Mismatched origin and shape dimensions. "
183 msg += f"Received {len(origin)} and {len(shape)}"
184 raise ValueError(msg)
185 self.origin = tuple(origin)
186
187 @staticmethod
188 def from_bounds(*bounds: tuple[int, ...]) -> Box:
189 """Initialize a box from its bounds
190
191 Parameters
192 ----------
193 bounds:
194 Min/Max coordinate for every dimension
195
196 Returns
197 -------
198 bbox:
199 A new box bounded by the input bounds.
200 """
201 shape = tuple(max(0, cmax - cmin) for cmin, cmax in bounds)
202 origin = tuple(cmin for cmin, cmax in bounds)
203 return Box(shape, origin=origin)
204
205 @staticmethod
206 def from_data(x: np.ndarray, threshold: float = 0) -> Box:
207 """Define range of `x` above `min_value`.
208
209 This method creates the smallest `Box` that contains all of the
210 elements in `x` that are above `min_value`.
211
212 Parameters
213 ----------
214 x:
215 Data to threshold to specify the shape/dimensionality of `x`.
216 threshold:
217 Threshold for the data.
218 The box is trimmed so that all elements bordering `x` smaller than
219 `min_value` are ignored.
220
221 Returns
222 -------
223 bbox:
224 Bounding box for the thresholded `x`
225 """
226 sel = x > threshold
227 if sel.any():
228 nonzero = np.where(sel)
229 bounds = []
230 for dim in range(len(x.shape)):
231 bounds.append((int(nonzero[dim].min()), int(nonzero[dim].max() + 1)))
232 else:
233 bounds = [(0, 0)] * len(x.shape)
234 return Box.from_bounds(*bounds)
235
236 def contains(self, p: Sequence[int]) -> bool:
237 """Whether the box contains a given coordinate `p`"""
238 if len(p) != self.ndimndim:
239 raise ValueError(f"Dimension mismatch in {p} and {self.ndim}")
240
241 for d in range(self.ndimndim):
242 if not (p[d] >= self.origin[d] and (p[d] < (self.origin[d] + self.shape[d]))):
243 return False
244 return True
245
246 @property
247 def ndim(self) -> int:
248 """Dimensionality of this BBox"""
249 return len(self.shape)
250
251 @property
252 def start(self) -> tuple[int, ...]:
253 """Tuple of start coordinates"""
254 return self.origin
255
256 @property
257 def stop(self) -> tuple[int, ...]:
258 """Tuple of stop coordinates"""
259 return tuple(o + s for o, s in zip(self.origin, self.shape))
260
261 @property
262 def center(self) -> tuple[float, ...]:
263 """Tuple of center coordinates"""
264 return tuple(o + s / 2 for o, s in zip(self.origin, self.shape))
265
266 @property
267 def bounds(self) -> tuple[tuple[int, int], ...]:
268 """Bounds of the box"""
269 return tuple((o, o + s) for o, s in zip(self.origin, self.shape))
270
271 @property
272 def slices(self) -> tuple[slice, ...]:
273 """Bounds of the box as slices"""
274 if np.any(self.origin) < 0:
275 raise ValueError("Cannot get slices for a box with negative indices")
276 return tuple([slice(o, o + s) for o, s in zip(self.origin, self.shape)])
277
278 def grow(self, radius: int | tuple[int, ...]) -> Box:
279 """Grow the Box by the given radius in each direction"""
280 if isinstance(radius, int):
281 radius = tuple([radius] * self.ndimndim)
282 origin = tuple([self.origin[d] - radius[d] for d in range(self.ndimndim)])
283 shape = tuple([self.shape[d] + 2 * radius[d] for d in range(self.ndimndim)])
284 return Box(shape, origin=origin)
285
286 def shifted_by(self, shift: Sequence[int]) -> Box:
287 """Generate a shifted copy of this box
288
289 Parameters
290 ----------
291 shift:
292 The amount to shift each axis to create the new box
293
294 Returns
295 -------
296 result:
297 The resulting bounding box.
298 """
299 origin = tuple(o + shift[i] for i, o in enumerate(self.origin))
300 return Box(self.shape, origin=origin)
301
302 def intersects(self, other: Box) -> bool:
303 """Check if two boxes overlap
304
305 Parameters
306 ----------
307 other:
308 The boxes to check for overlap
309
310 Returns
311 -------
312 result:
313 True when the two boxes overlap.
314 """
315 overlap = self & other
316 return np.all(np.array(overlap.shape) != 0) # type: ignore
317
318 def overlapped_slices(self, other: Box) -> tuple[tuple[slice, ...], tuple[slice, ...]]:
319 """Return `slice` for the box that contains the overlap of this and
320 another `Box`
321
322 Parameters
323 ----------
324 other:
325
326 Returns
327 -------
328 slices:
329 The slice of an array bounded by `self` and
330 the slice of an array bounded by `other` in the
331 overlapping region.
332 """
333 return overlapped_slices(self, other)
334
335 def __or__(self, other: Box) -> Box:
336 """Union of two bounding boxes
337
338 Parameters
339 ----------
340 other:
341 The other bounding box in the union
342
343 Returns
344 -------
345 result:
346 The smallest rectangular box that contains *both* boxes.
347 """
348 if other.ndim != self.ndimndim:
349 raise ValueError(f"Dimension mismatch in the boxes {other} and {self}")
350 bounds = []
351 for d in range(self.ndimndim):
352 bounds.append((min(self.start[d], other.start[d]), max(self.stop[d], other.stop[d])))
353 return Box.from_bounds(*bounds)
354
355 def __and__(self, other: Box) -> Box:
356 """Intersection of two bounding boxes
357
358 If there is no intersection between the two bounding
359 boxes then an empty bounding box is returned.
360
361 Parameters
362 ----------
363 other:
364 The other bounding box in the intersection
365
366 Returns
367 -------
368 result:
369 The rectangular box that is in the overlap region
370 of both boxes.
371 """
372 if other.ndim != self.ndimndim:
373 raise ValueError(f"Dimension mismatch in the boxes {other=} and {self=}")
374
375 bounds = []
376 for d in range(self.ndimndim):
377 bounds.append((max(self.start[d], other.start[d]), min(self.stop[d], other.stop[d])))
378 return Box.from_bounds(*bounds)
379
380 def __getitem__(self, index: int | slice | tuple[int, ...]) -> Box:
381 if isinstance(index, int) or isinstance(index, slice):
382 s_ = self.shape[index]
383 o_ = self.origin[index]
384 if isinstance(s_, int):
385 s_ = (s_,)
386 o_ = (cast(int, o_),) # type: ignore
387 else:
388 iter(index)
389 # If I is a Sequence then select the indices in `index`, in order
390 s_ = tuple(self.shape[i] for i in index)
391 o_ = tuple(self.origin[i] for i in index)
392 return Box(s_, origin=cast(tuple[int, ...], o_))
393
394 def __repr__(self) -> str:
395 return f"Box(shape={self.shape}, origin={self.origin})"
396
397 def _offset_to_tuple(self, offset: int | Sequence[int]) -> tuple[int, ...]:
398 """Expand an integer offset into a tuple
399
400 Parameters
401 ----------
402 offset:
403 The offset to (potentially) convert into a tuple.
404
405 Returns
406 -------
407 offset:
408 The offset as a tuple.
409 """
410 if isinstance(offset, int):
411 _offset = (offset,) * self.ndimndim
412 else:
413 _offset = tuple(offset)
414 return _offset
415
416 def __add__(self, offset: int | Sequence[int]) -> Box:
417 """Generate a new Box with a shifted offset
418
419 Parameters
420 ----------
421 offset:
422 The amount to shift the current offset
423
424 Returns
425 -------
426 result:
427 The shifted box.
428 """
429 return self.shifted_by(self._offset_to_tuple(offset))
430
431 def __sub__(self, offset: int | Sequence[int]) -> Box:
432 """Generate a new Box with a shifted offset in the negative direction
433
434 Parameters
435 ----------
436 offset:
437 The amount to shift the current offset
438
439 Returns
440 -------
441 result:
442 The shifted box.
443 """
444 offset = self._offset_to_tuple(offset)
445 offset = tuple(-o for o in offset)
446 return self.shifted_by(offset)
447
448 def __matmul__(self, bbox: Box) -> Box:
449 """Combine two Boxes into a higher dimensional box
450
451 Parameters
452 ----------
453 bbox:
454 The box to append to this box.
455
456 Returns
457 -------
458 result:
459 The combined Box.
460 """
461 bounds = self.bounds + bbox.bounds
462 result = Box.from_bounds(*bounds)
463 return result
464
465 def __copy__(self) -> Box:
466 """Copy of the box"""
467 return Box(self.shape, origin=self.origin)
468
469 def copy(self) -> Box:
470 """Copy of the box"""
471 return self.__copy__()
472
473 def __eq__(self, other: object) -> bool:
474 """Check for equality.
475
476 Two boxes are equal when they have the same shape and origin.
477 """
478 if not hasattr(other, "shape") and not hasattr(other, "origin"):
479 return False
480 return self.shape == other.shape and self.origin == other.origin # type: ignore
481
482 def __hash__(self) -> int:
483 return hash((self.shape, self.origin))
484
485
486def overlapped_slices(bbox1: Box, bbox2: Box) -> tuple[tuple[slice, ...], tuple[slice, ...]]:
487 """Slices of bbox1 and bbox2 that overlap
488
489 Parameters
490 ----------
491 bbox1:
492 The first box.
493 bbox2:
494 The second box.
495
496 Returns
497 -------
498 slices: tuple[Sequence[slice], Sequence[slice]]
499 The slice of an array bounded by `bbox1` and
500 the slice of an array bounded by `bbox2` in the
501 overlapping region.
502 """
503 overlap = bbox1 & bbox2
504 if np.all(np.array(overlap.shape) == 0):
505 # There was no overlap, so return empty slices
506 return (slice(0, 0),) * len(overlap.shape), (slice(0, 0),) * len(overlap.shape)
507 _bbox1 = overlap - bbox1.origin
508 _bbox2 = overlap - bbox2.origin
509 slices = (
510 _bbox1.slices,
511 _bbox2.slices,
512 )
513 return slices
int min
int max
Box __sub__(self, int|Sequence[int] offset)
Definition bbox.py:431
tuple[tuple[int, int],...] bounds(self)
Definition bbox.py:267
Box __getitem__(self, int|slice|tuple[int,...] index)
Definition bbox.py:380
Box __add__(self, int|Sequence[int] offset)
Definition bbox.py:416
bool contains(self, Sequence[int] p)
Definition bbox.py:236
tuple[int,...] stop(self)
Definition bbox.py:257
Box shifted_by(self, Sequence[int] shift)
Definition bbox.py:286
tuple[slice,...] slices(self)
Definition bbox.py:272
Box __or__(self, Box other)
Definition bbox.py:335
tuple[int,...] _offset_to_tuple(self, int|Sequence[int] offset)
Definition bbox.py:397
Box from_bounds(*tuple[int,...] bounds)
Definition bbox.py:188
__init__(self, tuple[int,...] shape, tuple[int,...]|None origin=None)
Definition bbox.py:177
Box __matmul__(self, Box bbox)
Definition bbox.py:448
tuple[float,...] center(self)
Definition bbox.py:262
bool __eq__(self, object other)
Definition bbox.py:473
Box from_data(np.ndarray x, float threshold=0)
Definition bbox.py:206
tuple[int,...] start(self)
Definition bbox.py:252
tuple[tuple[slice,...], tuple[slice,...]] overlapped_slices(self, Box other)
Definition bbox.py:318
Box grow(self, int|tuple[int,...] radius)
Definition bbox.py:278
bool intersects(self, Box other)
Definition bbox.py:302
Box __and__(self, Box other)
Definition bbox.py:355
tuple[tuple[slice,...], tuple[slice,...]] overlapped_slices(Box bbox1, Box bbox2)
Definition bbox.py:486