|
LSST Applications g00274db5b6+edbf708997,g00d0e8bbd7+edbf708997,g199a45376c+5137f08352,g1fd858c14a+1d4b6db739,g262e1987ae+f4d9505c4f,g29ae962dfc+7156fb1a53,g2cef7863aa+73c82f25e4,g35bb328faa+edbf708997,g3e17d7035e+5b3adc59f5,g3fd5ace14f+852fa6fbcb,g47891489e3+6dc8069a4c,g53246c7159+edbf708997,g64539dfbff+9f17e571f4,g67b6fd64d1+6dc8069a4c,g74acd417e5+ae494d68d9,g786e29fd12+af89c03590,g7ae74a0b1c+a25e60b391,g7aefaa3e3d+536efcc10a,g7cc15d900a+d121454f8d,g87389fa792+a4172ec7da,g89139ef638+6dc8069a4c,g8d7436a09f+28c28d8d6d,g8ea07a8fe4+db21c37724,g92c671f44c+9f17e571f4,g98df359435+b2e6376b13,g99af87f6a8+b0f4ad7b8d,gac66b60396+966efe6077,gb88ae4c679+7dec8f19df,gbaa8f7a6c5+38b34f4976,gbf99507273+edbf708997,gc24b5d6ed1+9f17e571f4,gca7fc764a6+6dc8069a4c,gcc769fe2a4+97d0256649,gd7ef33dd92+6dc8069a4c,gdab6d2f7ff+ae494d68d9,gdbb4c4dda9+9f17e571f4,ge410e46f29+6dc8069a4c,geaed405ab2+e194be0d2b,w.2025.47
LSST Data Management Base Package
|
This file contains functions for space-filling curves. More...
#include <cstdint>#include <tuple>Go to the source code of this file.
Namespaces | |
| namespace | lsst |
| namespace | lsst::sphgeom |
Functions | |
| std::uint64_t | lsst::sphgeom::mortonIndex (std::uint32_t x, std::uint32_t y) |
mortonIndex interleaves the bits of x and y. | |
| std::tuple< std::uint32_t, std::uint32_t > | lsst::sphgeom::mortonIndexInverse (std::uint64_t z) |
mortonIndexInverse separates the even and odd bits of z. | |
| std::uint64_t | lsst::sphgeom::mortonToHilbert (std::uint64_t z, int m) |
mortonToHilbert converts the 2m-bit Morton index z to the corresponding Hilbert index. | |
| std::uint64_t | lsst::sphgeom::hilbertToMorton (std::uint64_t h, int m) |
hilbertToMorton converts the 2m-bit Hilbert index h to the corresponding Morton index. | |
| std::uint64_t | lsst::sphgeom::hilbertIndex (std::uint32_t x, std::uint32_t y, int m) |
hilbertIndex returns the index of (x, y) in a 2-D Hilbert curve. | |
| std::tuple< std::uint32_t, std::uint32_t > | lsst::sphgeom::hilbertIndexInverse (std::uint64_t h, int m) |
hilbertIndexInverse returns the point (x, y) with Hilbert index h, where x and y are m bit integers. | |
| std::uint8_t | lsst::sphgeom::log2 (std::uint64_t x) |
| std::uint8_t | lsst::sphgeom::log2 (std::uint32_t x) |
This file contains functions for space-filling curves.
Mappings between 2-D points with non-negative integer coordinates and their corresponding Morton or Hilbert indexes are provided.
The Morton order implementation, mortonIndex, is straightforward. The Hilbert order implementation is derived from Algorithm 2 in:
C. Hamilton. Compact Hilbert indices. Technical Report CS-2006-07, Dalhousie University, Faculty of Computer Science, Jul 2006. https://www.cs.dal.ca/research/techreports/cs-2006-07
Using the variable names from that paper, n is fixed at 2. As a first step, the arithmetic in the loop over the bits of the input coordinates is replaced by a table lookup. In particular, the lookup maps the values of (e, d, l) at the beginning of a loop iteration to the values (e, d, w) at the end. Since e and d can both be represented by a single bit, and l and w are 2 bits wide, the lookup table has 16 4 bit entries and fits in a single 64 bit integer constant (0x8d3ec79a6b5021f4). The implementation then looks like:
inline std::uint64_t hilbertIndex(std::uint32_t x, std::uint32_t y, std::uint32_t m) {
std::uint64_t const z = mortonIndex(x, y);
std::uint64_t h = 0;
std::uint64_t i = 0;
for (m = 2 * m; m != 0;) {
m -= 2;
i = (i & 0xc) | ((z >> m) & 3);
i = UINT64_C(0x8d3ec79a6b5021f4) >> (i * 4);
h = (h << 2) | (i & 3);
}
return h;
}
Note that interleaving x and y with mortonIndex beforehand allows the loop to extract 2 bits at a time from z, rather than extracting bits from x and y and then pasting them together. This lowers the total operation count.
Performance is further increased by executing j loop iterations at a time. This requires using a larger lookup table that maps the values of e and d at the beginning of a loop iteration, along with 2j input bits, to the values of e and d after j iterations, along with 2j output bits. In this implementation, j = 3, which corresponds to a 256 byte LUT. On recent Intel CPUs the LUT fits in 4 cache lines, and, because of adjacent cache line prefetch, should become cache resident after just 2 misses.
For a helpful presentation of the technical report, as well as a reference implementation of its algorithms in Python, see Pierre de Buyl's notebook. The Hilbert curve lookup tables below were generated by a modification of that code (available in makeHilbertLuts.py).
Definition in file curve.h.