LSST Applications g013ef56533+d2224463a4,g199a45376c+0ba108daf9,g19c4beb06c+9f335b2115,g1fd858c14a+2459ca3e43,g210f2d0738+2d3d333a78,g262e1987ae+abbb004f04,g2825c19fe3+eedc38578d,g29ae962dfc+0cb55f06ef,g2cef7863aa+aef1011c0b,g35bb328faa+8c5ae1fdc5,g3fd5ace14f+19c3a54948,g47891489e3+501a489530,g4cdb532a89+a047e97985,g511e8cfd20+ce1f47b6d6,g53246c7159+8c5ae1fdc5,g54cd7ddccb+890c8e1e5d,g5fd55ab2c7+951cc3f256,g64539dfbff+2d3d333a78,g67b6fd64d1+501a489530,g67fd3c3899+2d3d333a78,g74acd417e5+0ea5dee12c,g786e29fd12+668abc6043,g87389fa792+8856018cbb,g89139ef638+501a489530,g8d7436a09f+5ea4c44d25,g8ea07a8fe4+81eaaadc04,g90f42f885a+34c0557caf,g9486f8a5af+165c016931,g97be763408+d5e351dcc8,gbf99507273+8c5ae1fdc5,gc2a301910b+2d3d333a78,gca7fc764a6+501a489530,gce8aa8abaa+8c5ae1fdc5,gd7ef33dd92+501a489530,gdab6d2f7ff+0ea5dee12c,ge410e46f29+501a489530,geaed405ab2+e3b4b2a692,gf9a733ac38+8c5ae1fdc5,w.2025.41
LSST Data Management Base Package
Loading...
Searching...
No Matches
curve.h File Reference

This file contains functions for space-filling curves. More...

#include <cstdint>
#include <tuple>

Go to the source code of this file.

Namespaces

namespace  lsst
 
namespace  lsst::sphgeom
 

Functions

std::uint64_t lsst::sphgeom::mortonIndex (std::uint32_t x, std::uint32_t y)
 mortonIndex interleaves the bits of x and y.
 
std::tuple< std::uint32_t, std::uint32_tlsst::sphgeom::mortonIndexInverse (std::uint64_t z)
 mortonIndexInverse separates the even and odd bits of z.
 
std::uint64_t lsst::sphgeom::mortonToHilbert (std::uint64_t z, int m)
 mortonToHilbert converts the 2m-bit Morton index z to the corresponding Hilbert index.
 
std::uint64_t lsst::sphgeom::hilbertToMorton (std::uint64_t h, int m)
 hilbertToMorton converts the 2m-bit Hilbert index h to the corresponding Morton index.
 
std::uint64_t lsst::sphgeom::hilbertIndex (std::uint32_t x, std::uint32_t y, int m)
 hilbertIndex returns the index of (x, y) in a 2-D Hilbert curve.
 
std::tuple< std::uint32_t, std::uint32_tlsst::sphgeom::hilbertIndexInverse (std::uint64_t h, int m)
 hilbertIndexInverse returns the point (x, y) with Hilbert index h, where x and y are m bit integers.
 
std::uint8_t lsst::sphgeom::log2 (std::uint64_t x)
 
std::uint8_t lsst::sphgeom::log2 (std::uint32_t x)
 

Detailed Description

This file contains functions for space-filling curves.

Mappings between 2-D points with non-negative integer coordinates and their corresponding Morton or Hilbert indexes are provided.

The Morton order implementation, mortonIndex, is straightforward. The Hilbert order implementation is derived from Algorithm 2 in:

C. Hamilton. Compact Hilbert indices. Technical Report CS-2006-07, Dalhousie University, Faculty of Computer Science, Jul 2006. https://www.cs.dal.ca/research/techreports/cs-2006-07

Using the variable names from that paper, n is fixed at 2. As a first step, the arithmetic in the loop over the bits of the input coordinates is replaced by a table lookup. In particular, the lookup maps the values of (e, d, l) at the beginning of a loop iteration to the values (e, d, w) at the end. Since e and d can both be represented by a single bit, and l and w are 2 bits wide, the lookup table has 16 4 bit entries and fits in a single 64 bit integer constant (0x8d3ec79a6b5021f4). The implementation then looks like:

inline std::uint64_t hilbertIndex(std::uint32_t x, std::uint32_t y, std::uint32_t m) {
    std::uint64_t const z = mortonIndex(x, y);
    std::uint64_t h = 0;
    std::uint64_t i = 0;
    for (m = 2 * m; m != 0;) {
        m -= 2;
        i = (i & 0xc) | ((z >> m) & 3);
        i = UINT64_C(0x8d3ec79a6b5021f4) >> (i * 4);
        h = (h << 2) | (i & 3);
    }
    return h;
}

Note that interleaving x and y with mortonIndex beforehand allows the loop to extract 2 bits at a time from z, rather than extracting bits from x and y and then pasting them together. This lowers the total operation count.

Performance is further increased by executing j loop iterations at a time. This requires using a larger lookup table that maps the values of e and d at the beginning of a loop iteration, along with 2j input bits, to the values of e and d after j iterations, along with 2j output bits. In this implementation, j = 3, which corresponds to a 256 byte LUT. On recent Intel CPUs the LUT fits in 4 cache lines, and, because of adjacent cache line prefetch, should become cache resident after just 2 misses.

For a helpful presentation of the technical report, as well as a reference implementation of its algorithms in Python, see Pierre de Buyl's notebook. The Hilbert curve lookup tables below were generated by a modification of that code (available in makeHilbertLuts.py).

Definition in file curve.h.