LSST Applications g0fba68d861+83433b07ee,g16d25e1f1b+23bc9e47ac,g1ec0fe41b4+3ea9d11450,g1fd858c14a+9be2b0f3b9,g2440f9efcc+8c5ae1fdc5,g35bb328faa+8c5ae1fdc5,g4a4af6cd76+d25431c27e,g4d2262a081+c74e83464e,g53246c7159+8c5ae1fdc5,g55585698de+1e04e59700,g56a49b3a55+92a7603e7a,g60b5630c4e+1e04e59700,g67b6fd64d1+3fc8cb0b9e,g78460c75b0+7e33a9eb6d,g786e29fd12+668abc6043,g8352419a5c+8c5ae1fdc5,g8852436030+60e38ee5ff,g89139ef638+3fc8cb0b9e,g94187f82dc+1e04e59700,g989de1cb63+3fc8cb0b9e,g9d31334357+1e04e59700,g9f33ca652e+0a83e03614,gabe3b4be73+8856018cbb,gabf8522325+977d9fabaf,gb1101e3267+8b4b9c8ed7,gb89ab40317+3fc8cb0b9e,gc0af124501+57ccba3ad1,gcf25f946ba+60e38ee5ff,gd6cbbdb0b4+1cc2750d2e,gd794735e4e+7be992507c,gdb1c4ca869+be65c9c1d7,gde0f65d7ad+c7f52e58fe,ge278dab8ac+6b863515ed,ge410e46f29+3fc8cb0b9e,gf35d7ec915+97dd712d81,gf5e32f922b+8c5ae1fdc5,gf618743f1b+747388abfa,gf67bdafdda+3fc8cb0b9e,w.2025.18
LSST Data Management Base Package
|
This file contains functions for space-filling curves. More...
#include <cstdint>
#include <tuple>
Go to the source code of this file.
Namespaces | |
namespace | lsst |
namespace | lsst::sphgeom |
Functions | |
std::uint64_t | lsst::sphgeom::mortonIndex (std::uint32_t x, std::uint32_t y) |
mortonIndex interleaves the bits of x and y. | |
std::tuple< std::uint32_t, std::uint32_t > | lsst::sphgeom::mortonIndexInverse (std::uint64_t z) |
mortonIndexInverse separates the even and odd bits of z. | |
std::uint64_t | lsst::sphgeom::mortonToHilbert (std::uint64_t z, int m) |
mortonToHilbert converts the 2m-bit Morton index z to the corresponding Hilbert index. | |
std::uint64_t | lsst::sphgeom::hilbertToMorton (std::uint64_t h, int m) |
hilbertToMorton converts the 2m-bit Hilbert index h to the corresponding Morton index. | |
std::uint64_t | lsst::sphgeom::hilbertIndex (std::uint32_t x, std::uint32_t y, int m) |
hilbertIndex returns the index of (x, y) in a 2-D Hilbert curve. | |
std::tuple< std::uint32_t, std::uint32_t > | lsst::sphgeom::hilbertIndexInverse (std::uint64_t h, int m) |
hilbertIndexInverse returns the point (x, y) with Hilbert index h, where x and y are m bit integers. | |
std::uint8_t | lsst::sphgeom::log2 (std::uint64_t x) |
std::uint8_t | lsst::sphgeom::log2 (std::uint32_t x) |
This file contains functions for space-filling curves.
Mappings between 2-D points with non-negative integer coordinates and their corresponding Morton or Hilbert indexes are provided.
The Morton order implementation, mortonIndex, is straightforward. The Hilbert order implementation is derived from Algorithm 2 in:
C. Hamilton. Compact Hilbert indices. Technical Report CS-2006-07, Dalhousie University, Faculty of Computer Science, Jul 2006. https://www.cs.dal.ca/research/techreports/cs-2006-07
Using the variable names from that paper, n is fixed at 2. As a first step, the arithmetic in the loop over the bits of the input coordinates is replaced by a table lookup. In particular, the lookup maps the values of (e, d, l) at the beginning of a loop iteration to the values (e, d, w) at the end. Since e and d can both be represented by a single bit, and l and w are 2 bits wide, the lookup table has 16 4 bit entries and fits in a single 64 bit integer constant (0x8d3ec79a6b5021f4). The implementation then looks like:
inline std::uint64_t hilbertIndex(std::uint32_t x, std::uint32_t y, std::uint32_t m) { std::uint64_t const z = mortonIndex(x, y); std::uint64_t h = 0; std::uint64_t i = 0; for (m = 2 * m; m != 0;) { m -= 2; i = (i & 0xc) | ((z >> m) & 3); i = UINT64_C(0x8d3ec79a6b5021f4) >> (i * 4); h = (h << 2) | (i & 3); } return h; }
Note that interleaving x and y with mortonIndex beforehand allows the loop to extract 2 bits at a time from z, rather than extracting bits from x and y and then pasting them together. This lowers the total operation count.
Performance is further increased by executing j loop iterations at a time. This requires using a larger lookup table that maps the values of e and d at the beginning of a loop iteration, along with 2j input bits, to the values of e and d after j iterations, along with 2j output bits. In this implementation, j = 3, which corresponds to a 256 byte LUT. On recent Intel CPUs the LUT fits in 4 cache lines, and, because of adjacent cache line prefetch, should become cache resident after just 2 misses.
For a helpful presentation of the technical report, as well as a reference implementation of its algorithms in Python, see Pierre de Buyl's notebook. The Hilbert curve lookup tables below were generated by a modification of that code (available in makeHilbertLuts.py).
Definition in file curve.h.