LSST Applications g04a91732dc+a3f7a6a005,g07dc498a13+5ab4d22ec3,g0fba68d861+870ee37b31,g1409bbee79+5ab4d22ec3,g1a7e361dbc+5ab4d22ec3,g1fd858c14a+11200c7927,g20f46db602+25d63fd678,g35bb328faa+fcb1d3bbc8,g4d2262a081+cc8af5cafb,g4d39ba7253+6b9d64fe03,g4e0f332c67+5d362be553,g53246c7159+fcb1d3bbc8,g60b5630c4e+6b9d64fe03,g78460c75b0+2f9a1b4bcd,g786e29fd12+cf7ec2a62a,g7b71ed6315+fcb1d3bbc8,g8048e755c2+a1301e4c20,g8852436030+a750987b4a,g89139ef638+5ab4d22ec3,g89e1512fd8+a86d53a4aa,g8d6b6b353c+6b9d64fe03,g9125e01d80+fcb1d3bbc8,g989de1cb63+5ab4d22ec3,g9f33ca652e+38ca901d1a,ga9baa6287d+6b9d64fe03,gaaedd4e678+5ab4d22ec3,gabe3b4be73+1e0a283bba,gb1101e3267+aa269f591c,gb58c049af0+f03b321e39,gb90eeb9370+af74afe682,gc741bbaa4f+7f5db660ea,gcf25f946ba+a750987b4a,gd315a588df+b78635c672,gd6cbbdb0b4+c8606af20c,gd9a9a58781+fcb1d3bbc8,gde0f65d7ad+5839af1903,ge278dab8ac+932305ba37,ge82c20c137+76d20ab76d,w.2025.11
LSST Data Management Base Package
|
This file contains functions for space-filling curves. More...
#include <cstdint>
#include <tuple>
Go to the source code of this file.
Namespaces | |
namespace | lsst |
namespace | lsst::sphgeom |
Functions | |
std::uint64_t | lsst::sphgeom::mortonIndex (std::uint32_t x, std::uint32_t y) |
mortonIndex interleaves the bits of x and y. | |
std::tuple< std::uint32_t, std::uint32_t > | lsst::sphgeom::mortonIndexInverse (std::uint64_t z) |
mortonIndexInverse separates the even and odd bits of z. | |
std::uint64_t | lsst::sphgeom::mortonToHilbert (std::uint64_t z, int m) |
mortonToHilbert converts the 2m-bit Morton index z to the corresponding Hilbert index. | |
std::uint64_t | lsst::sphgeom::hilbertToMorton (std::uint64_t h, int m) |
hilbertToMorton converts the 2m-bit Hilbert index h to the corresponding Morton index. | |
std::uint64_t | lsst::sphgeom::hilbertIndex (std::uint32_t x, std::uint32_t y, int m) |
hilbertIndex returns the index of (x, y) in a 2-D Hilbert curve. | |
std::tuple< std::uint32_t, std::uint32_t > | lsst::sphgeom::hilbertIndexInverse (std::uint64_t h, int m) |
hilbertIndexInverse returns the point (x, y) with Hilbert index h, where x and y are m bit integers. | |
std::uint8_t | lsst::sphgeom::log2 (std::uint64_t x) |
std::uint8_t | lsst::sphgeom::log2 (std::uint32_t x) |
This file contains functions for space-filling curves.
Mappings between 2-D points with non-negative integer coordinates and their corresponding Morton or Hilbert indexes are provided.
The Morton order implementation, mortonIndex, is straightforward. The Hilbert order implementation is derived from Algorithm 2 in:
C. Hamilton. Compact Hilbert indices. Technical Report CS-2006-07, Dalhousie University, Faculty of Computer Science, Jul 2006. https://www.cs.dal.ca/research/techreports/cs-2006-07
Using the variable names from that paper, n is fixed at 2. As a first step, the arithmetic in the loop over the bits of the input coordinates is replaced by a table lookup. In particular, the lookup maps the values of (e, d, l) at the beginning of a loop iteration to the values (e, d, w) at the end. Since e and d can both be represented by a single bit, and l and w are 2 bits wide, the lookup table has 16 4 bit entries and fits in a single 64 bit integer constant (0x8d3ec79a6b5021f4). The implementation then looks like:
inline std::uint64_t hilbertIndex(std::uint32_t x, std::uint32_t y, std::uint32_t m) { std::uint64_t const z = mortonIndex(x, y); std::uint64_t h = 0; std::uint64_t i = 0; for (m = 2 * m; m != 0;) { m -= 2; i = (i & 0xc) | ((z >> m) & 3); i = UINT64_C(0x8d3ec79a6b5021f4) >> (i * 4); h = (h << 2) | (i & 3); } return h; }
Note that interleaving x and y with mortonIndex beforehand allows the loop to extract 2 bits at a time from z, rather than extracting bits from x and y and then pasting them together. This lowers the total operation count.
Performance is further increased by executing j loop iterations at a time. This requires using a larger lookup table that maps the values of e and d at the beginning of a loop iteration, along with 2j input bits, to the values of e and d after j iterations, along with 2j output bits. In this implementation, j = 3, which corresponds to a 256 byte LUT. On recent Intel CPUs the LUT fits in 4 cache lines, and, because of adjacent cache line prefetch, should become cache resident after just 2 misses.
For a helpful presentation of the technical report, as well as a reference implementation of its algorithms in Python, see Pierre de Buyl's notebook. The Hilbert curve lookup tables below were generated by a modification of that code (available in makeHilbertLuts.py).
Definition in file curve.h.