LSST Applications g063fba187b+cac8b7c890,g0f08755f38+6aee506743,g1653933729+a8ce1bb630,g168dd56ebc+a8ce1bb630,g1a2382251a+b4475c5878,g1dcb35cd9c+8f9bc1652e,g20f6ffc8e0+6aee506743,g217e2c1bcf+73dee94bd0,g28da252d5a+1f19c529b9,g2bbee38e9b+3f2625acfc,g2bc492864f+3f2625acfc,g3156d2b45e+6e55a43351,g32e5bea42b+1bb94961c2,g347aa1857d+3f2625acfc,g35bb328faa+a8ce1bb630,g3a166c0a6a+3f2625acfc,g3e281a1b8c+c5dd892a6c,g3e8969e208+a8ce1bb630,g414038480c+5927e1bc1e,g41af890bb2+8a9e676b2a,g7af13505b9+809c143d88,g80478fca09+6ef8b1810f,g82479be7b0+f568feb641,g858d7b2824+6aee506743,g89c8672015+f4add4ffd5,g9125e01d80+a8ce1bb630,ga5288a1d22+2903d499ea,gb58c049af0+d64f4d3760,gc28159a63d+3f2625acfc,gcab2d0539d+b12535109e,gcf0d15dbbd+46a3f46ba9,gda6a2b7d83+46a3f46ba9,gdaeeff99f8+1711a396fd,ge79ae78c31+3f2625acfc,gef2f8181fd+0a71e47438,gf0baf85859+c1f95f4921,gfa517265be+6aee506743,gfa999e8aa5+17cd334064,w.2024.51
LSST Data Management Base Package
Loading...
Searching...
No Matches
fgcmCalibrateTractTable.py
Go to the documentation of this file.
1# See COPYRIGHT file at the top of the source tree.
2#
3# This file is part of fgcmcal.
4#
5# Developed for the LSST Data Management System.
6# This product includes software developed by the LSST Project
7# (https://www.lsst.org).
8# See the COPYRIGHT file at the top-level directory of this distribution
9# for details of code ownership.
10#
11# This program is free software: you can redistribute it and/or modify
12# it under the terms of the GNU General Public License as published by
13# the Free Software Foundation, either version 3 of the License, or
14# (at your option) any later version.
15#
16# This program is distributed in the hope that it will be useful,
17# but WITHOUT ANY WARRANTY; without even the implied warranty of
18# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19# GNU General Public License for more details.
20#
21# You should have received a copy of the GNU General Public License
22# along with this program. If not, see <https://www.gnu.org/licenses/>.
23"""Class for running fgcmcal on a single tract using sourceTable_visit tables.
24"""
25import numpy as np
26
27import lsst.pipe.base as pipeBase
28from lsst.pipe.base import connectionTypes
29from lsst.meas.algorithms import ReferenceObjectLoader, LoadReferenceObjectsConfig
30import lsst.afw.table as afwTable
31
32from .fgcmBuildStarsTable import FgcmBuildStarsTableTask
33from .fgcmCalibrateTractBase import (FgcmCalibrateTractConfigBase,
34 FgcmCalibrateTractBaseTask)
35
36__all__ = ['FgcmCalibrateTractTableConfig', 'FgcmCalibrateTractTableTask']
37
38
39class FgcmCalibrateTractTableConnections(pipeBase.PipelineTaskConnections,
40 dimensions=("instrument",
41 "tract",)):
42 camera = connectionTypes.PrerequisiteInput(
43 doc="Camera instrument",
44 name="camera",
45 storageClass="Camera",
46 dimensions=("instrument",),
47 isCalibration=True,
48 )
49
50 fgcmLookUpTable = connectionTypes.PrerequisiteInput(
51 doc=("Atmosphere + instrument look-up-table for FGCM throughput and "
52 "chromatic corrections."),
53 name="fgcmLookUpTable",
54 storageClass="Catalog",
55 dimensions=("instrument",),
56 deferLoad=True,
57 )
58
59 sourceSchema = connectionTypes.InitInput(
60 doc="Schema for source catalogs",
61 name="src_schema",
62 storageClass="SourceCatalog",
63 )
64
65 refCat = connectionTypes.PrerequisiteInput(
66 doc="Reference catalog to use for photometric calibration",
67 name="cal_ref_cat",
68 storageClass="SimpleCatalog",
69 dimensions=("skypix",),
70 deferLoad=True,
71 multiple=True,
72 )
73
74 source_catalogs = connectionTypes.Input(
75 doc="Source table in parquet format, per visit",
76 name="sourceTable_visit",
77 storageClass="DataFrame",
78 dimensions=("instrument", "visit"),
79 deferLoad=True,
80 multiple=True,
81 )
82
83 visitSummary = connectionTypes.Input(
84 doc="Per-visit summary statistics table",
85 name="visitSummary",
86 storageClass="ExposureCatalog",
87 dimensions=("instrument", "visit"),
88 deferLoad=True,
89 multiple=True,
90 )
91
92 background = connectionTypes.Input(
93 doc="Calexp background model",
94 name="calexpBackground",
95 storageClass="Background",
96 dimensions=("instrument", "visit", "detector"),
97 deferLoad=True,
98 multiple=True,
99 )
100
101 fgcmPhotoCalib = connectionTypes.Output(
102 doc="Per-tract, per-visit photoCalib exposure catalogs produced from fgcm calibration",
103 name="fgcmPhotoCalibTractCatalog",
104 storageClass="ExposureCatalog",
105 dimensions=("instrument", "tract", "visit",),
106 multiple=True,
107 )
108
109 fgcmTransmissionAtmosphere = connectionTypes.Output(
110 doc="Per-visit atmosphere transmission files produced from fgcm calibration",
111 name="transmission_atmosphere_fgcm_tract",
112 storageClass="TransmissionCurve",
113 dimensions=("instrument", "tract", "visit",),
114 multiple=True,
115 )
116
117 fgcmRepeatability = connectionTypes.Output(
118 doc="Per-band raw repeatability numbers in the fgcm tract calibration",
119 name="fgcmRawRepeatability",
120 storageClass="Catalog",
121 dimensions=("instrument", "tract",),
122 multiple=False,
123 )
124
125 def __init__(self, *, config=None):
126 super().__init__(config=config)
127
128 if not config.fgcmBuildStars.doModelErrorsWithBackground:
129 self.inputs.remove("background")
130
131 if not config.fgcmOutputProducts.doAtmosphereOutput:
132 self.prerequisiteInputs.remove("fgcmAtmosphereParameters")
133 if not config.fgcmOutputProducts.doZeropointOutput:
134 self.prerequisiteInputs.remove("fgcmZeropoints")
135
137 return ("visitSummary",)
138
139
141 pipelineConnections=FgcmCalibrateTractTableConnections):
142 """Config for FgcmCalibrateTractTable task"""
143 def setDefaults(self):
144 super().setDefaults()
145
146 # For the Table version of CalibrateTract, use the associated
147 # Table version of the BuildStars task.
148 self.fgcmBuildStars.retarget(FgcmBuildStarsTableTask)
149 # For tract mode, we set a very high effective density cut.
150 self.fgcmBuildStars.densityCutMaxPerPixel = 10000
151
152
154 """
155 Calibrate a single tract using fgcmcal, using sourceTable_visit (parquet)
156 input catalogs.
157 """
158 ConfigClass = FgcmCalibrateTractTableConfig
159 _DefaultName = "fgcmCalibrateTractTable"
160
161 canMultiprocess = False
162
163 def __init__(self, initInputs=None, **kwargs):
164 super().__init__(initInputs=initInputs, **kwargs)
165 if initInputs is not None:
166 self.sourceSchema = initInputs["sourceSchema"].schema
167
168 def runQuantum(self, butlerQC, inputRefs, outputRefs):
169 handleDict = butlerQC.get(inputRefs)
170
171 self.log.info("Running with %d sourceTable_visit handles", (len(handleDict['source_catalogs'])))
172
173 # Run the build stars tasks
174 tract = butlerQC.quantum.dataId['tract']
175
176 handleDict['sourceSchema'] = self.sourceSchema
177
178 sourceTableHandles = handleDict['source_catalogs']
179 sourceTableHandleDict = {sourceTableHandle.dataId['visit']: sourceTableHandle for
180 sourceTableHandle in sourceTableHandles}
181
182 visitSummaryHandles = handleDict['visitSummary']
183 visitSummaryHandleDict = {visitSummaryHandle.dataId['visit']: visitSummaryHandle for
184 visitSummaryHandle in visitSummaryHandles}
185
186 handleDict['sourceTableHandleDict'] = sourceTableHandleDict
187 handleDict['visitSummaryHandleDict'] = visitSummaryHandleDict
188
189 # And the outputs
190 if self.config.fgcmOutputProducts.doZeropointOutput:
191 photoCalibRefDict = {photoCalibRef.dataId['visit']:
192 photoCalibRef for photoCalibRef in outputRefs.fgcmPhotoCalib}
193 handleDict['fgcmPhotoCalibs'] = photoCalibRefDict
194
195 if self.config.fgcmOutputProducts.doAtmosphereOutput:
196 atmRefDict = {atmRef.dataId['visit']: atmRef for
197 atmRef in outputRefs.fgcmTransmissionAtmosphere}
198 handleDict['fgcmTransmissionAtmospheres'] = atmRefDict
199
200 if self.config.fgcmBuildStars.doReferenceMatches:
201 refConfig = LoadReferenceObjectsConfig()
202 refConfig.filterMap = self.config.fgcmBuildStars.fgcmLoadReferenceCatalog.filterMap
203 loader = ReferenceObjectLoader(dataIds=[ref.datasetRef.dataId
204 for ref in inputRefs.refCat],
205 refCats=butlerQC.get(inputRefs.refCat),
206 name=self.config.connections.refCat,
207 config=refConfig,
208 log=self.log)
209 buildStarsRefObjLoader = loader
210 else:
211 buildStarsRefObjLoader = None
212
213 if self.config.fgcmOutputProducts.doReferenceCalibration:
214 refConfig = self.config.fgcmOutputProducts.refObjLoader
215 loader = ReferenceObjectLoader(dataIds=[ref.datasetRef.dataId
216 for ref in inputRefs.refCat],
217 refCats=butlerQC.get(inputRefs.refCat),
218 name=self.config.connections.refCat,
219 config=refConfig,
220 log=self.log)
221 self.fgcmOutputProducts.refObjLoader = loader
222
223 struct = self.run(handleDict, tract,
224 buildStarsRefObjLoader=buildStarsRefObjLoader)
225
226 if struct.photoCalibCatalogs is not None:
227 self.log.info("Outputting photoCalib catalogs.")
228 for visit, expCatalog in struct.photoCalibCatalogs:
229 butlerQC.put(expCatalog, photoCalibRefDict[visit])
230 self.log.info("Done outputting photoCalib catalogs.")
231
232 if struct.atmospheres is not None:
233 self.log.info("Outputting atmosphere transmission files.")
234 for visit, atm in struct.atmospheres:
235 butlerQC.put(atm, atmRefDict[visit])
236 self.log.info("Done outputting atmosphere files.")
237
238 # Turn raw repeatability into simple catalog for persistence
239 schema = afwTable.Schema()
240 schema.addField('rawRepeatability', type=np.float64,
241 doc="Per-band raw repeatability in FGCM calibration.")
242 repeatabilityCat = afwTable.BaseCatalog(schema)
243 repeatabilityCat.resize(len(struct.repeatability))
244 repeatabilityCat['rawRepeatability'][:] = struct.repeatability
245
246 butlerQC.put(repeatabilityCat, outputRefs.fgcmRepeatability)
247
248 return
Defines the fields and offsets for a table.
Definition Schema.h:51
run(self, handleDict, tract, buildStarsRefObjLoader=None, returnCatalogs=True)