LSST Applications g063fba187b+fee0456c91,g0f08755f38+ea96e5a5a3,g1653933729+a8ce1bb630,g168dd56ebc+a8ce1bb630,g1a2382251a+90257ff92a,g20f6ffc8e0+ea96e5a5a3,g217e2c1bcf+937a289c59,g28da252d5a+daa7da44eb,g2bbee38e9b+253935c60e,g2bc492864f+253935c60e,g3156d2b45e+6e55a43351,g32e5bea42b+31359a2a7a,g347aa1857d+253935c60e,g35bb328faa+a8ce1bb630,g3a166c0a6a+253935c60e,g3b1af351f3+a8ce1bb630,g3e281a1b8c+c5dd892a6c,g414038480c+416496e02f,g41af890bb2+afe91b1188,g599934f4f4+0db33f7991,g7af13505b9+e36de7bce6,g80478fca09+da231ba887,g82479be7b0+a4516e59e3,g858d7b2824+ea96e5a5a3,g89c8672015+f4add4ffd5,g9125e01d80+a8ce1bb630,ga5288a1d22+bc6ab8dfbd,gb58c049af0+d64f4d3760,gc28159a63d+253935c60e,gcab2d0539d+3f2b72788c,gcf0d15dbbd+4ea9c45075,gda6a2b7d83+4ea9c45075,gdaeeff99f8+1711a396fd,ge79ae78c31+253935c60e,gef2f8181fd+3031e3cf99,gf0baf85859+c1f95f4921,gfa517265be+ea96e5a5a3,gfa999e8aa5+17cd334064,w.2024.50
LSST Data Management Base Package
|
Classes | |
class | EventHandler |
class | ObjectSizeStarSelectorConfig |
class | ObjectSizeStarSelectorTask |
Functions | |
_assignClusters (yvec, centers) | |
_kcenters (yvec, nCluster, useMedian=False, widthStdAllowed=0.15) | |
_improveCluster (yvec, centers, clusterId, nsigma=2.0, nIteration=10, clusterNum=0, widthStdAllowed=0.15) | |
plot (mag, width, centers, clusterId, marker="o", markersize=2, markeredgewidth=0, ltype='-', magType="model", clear=True) | |
Variables | |
_LOG = getLogger(__name__) | |
|
protected |
Return a vector of centerIds based on their distance to the centers.
Definition at line 167 of file objectSizeStarSelector.py.
|
protected |
Improve our estimate of one of the clusters (clusterNum) by sigma-clipping around its median.
Definition at line 240 of file objectSizeStarSelector.py.
|
protected |
A classic k-means algorithm, clustering yvec into nCluster clusters Return the set of centres, and the cluster ID for each of the points If useMedian is true, use the median of the cluster as its centre, rather than the traditional mean Serge Monkewitz points out that there other (maybe smarter) ways of seeding the means: "e.g. why not use the Forgy or random partition initialization methods" however, the approach adopted here seems to work well for the particular sorts of things we're clustering in this application
Definition at line 198 of file objectSizeStarSelector.py.
lsst.meas.algorithms.objectSizeStarSelector.plot | ( | mag, | |
width, | |||
centers, | |||
clusterId, | |||
marker = "o", | |||
markersize = 2, | |||
markeredgewidth = 0, | |||
ltype = '-', | |||
magType = "model", | |||
clear = True ) |
Definition at line 276 of file objectSizeStarSelector.py.
|
protected |
Definition at line 41 of file objectSizeStarSelector.py.