LSST Applications g013ef56533+63812263fb,g083dd6704c+a047e97985,g199a45376c+0ba108daf9,g1fd858c14a+fde7a7a78c,g210f2d0738+db0c280453,g262e1987ae+abed931625,g29ae962dfc+058d1915d8,g2cef7863aa+aef1011c0b,g35bb328faa+8c5ae1fdc5,g3fd5ace14f+64337f1634,g47891489e3+f459a6810c,g53246c7159+8c5ae1fdc5,g54cd7ddccb+890c8e1e5d,g5a60e81ecd+d9e514a434,g64539dfbff+db0c280453,g67b6fd64d1+f459a6810c,g6ebf1fc0d4+8c5ae1fdc5,g7382096ae9+36d16ea71a,g74acd417e5+c70e70fbf6,g786e29fd12+668abc6043,g87389fa792+8856018cbb,g89139ef638+f459a6810c,g8d7436a09f+1b779678e3,g8ea07a8fe4+81eaaadc04,g90f42f885a+34c0557caf,g97be763408+9583a964dd,g98a1a72a9c+028271c396,g98df359435+530b675b85,gb8cb2b794d+4e54f68785,gbf99507273+8c5ae1fdc5,gc2a301910b+db0c280453,gca7fc764a6+f459a6810c,gd7ef33dd92+f459a6810c,gdab6d2f7ff+c70e70fbf6,ge410e46f29+f459a6810c,ge41e95a9f2+db0c280453,geaed405ab2+e3b4b2a692,gf9a733ac38+8c5ae1fdc5,w.2025.43
LSST Data Management Base Package
Loading...
Searching...
No Matches
test_gaussian Namespace Reference

Functions

 test_Gaussian ()
 
 test_Gaussians ()
 
 gaussians ()
 
 convolved_gaussian (gaussians)
 
 test_ConvolvedGaussian (convolved_gaussian, gaussians)
 
 test_ConvolvedGaussians (convolved_gaussian, gaussians)
 

Variables

str prefix_namespace = "lsst.gauss2d."
 

Function Documentation

◆ convolved_gaussian()

test_gaussian.convolved_gaussian ( gaussians)

Definition at line 77 of file test_gaussian.py.

77def convolved_gaussian(gaussians):
78 gauss_conv = g2d.ConvolvedGaussian(gaussians[0], gaussians[1])
79 return gauss_conv
80
81
A convolution of a Gaussian source and kernel.
Definition gaussian.h:220

◆ gaussians()

test_gaussian.gaussians ( )

Definition at line 70 of file test_gaussian.py.

70def gaussians():
71 gauss1 = g2d.Gaussian(centroid=None, ellipse=g2d.Ellipse(3, 6, 0))
72 gauss2 = g2d.Gaussian(centroid=None, ellipse=g2d.Ellipse(4, 8, 0))
73 return gauss1, gauss2
74
75
76@pytest.fixture(scope="module")
An Ellipse with sigma_x, sigma_y, and rho values.
Definition ellipse.h:283
A 2D Gaussian with a Centroid, Ellipse, and integral.
Definition gaussian.h:99

◆ test_ConvolvedGaussian()

test_gaussian.test_ConvolvedGaussian ( convolved_gaussian,
gaussians )

Definition at line 82 of file test_gaussian.py.

82def test_ConvolvedGaussian(convolved_gaussian, gaussians):
83 assert convolved_gaussian.source is gaussians[0]
84 assert convolved_gaussian.kernel is gaussians[1]
85
86

◆ test_ConvolvedGaussians()

test_gaussian.test_ConvolvedGaussians ( convolved_gaussian,
gaussians )

Definition at line 87 of file test_gaussian.py.

87def test_ConvolvedGaussians(convolved_gaussian, gaussians):
88 conv_gaussian2 = g2d.ConvolvedGaussian(gaussians[1], gaussians[0])
89 conv_list = [convolved_gaussian, conv_gaussian2]
90 n_conv = len(conv_list)
91 conv_gaussians = g2d.ConvolvedGaussians(conv_list)
92 assert len(conv_gaussians) == n_conv
93 assert conv_gaussians.size == n_conv
94 assert conv_gaussians[0] is conv_list[0]
95 assert conv_gaussians.at(1) is conv_list[1]
96 with pytest.raises(IndexError):
97 conv_gaussians[n_conv]
A collection of ConvolvedGaussian objects.
Definition gaussian.h:249

◆ test_Gaussian()

test_gaussian.test_Gaussian ( )

Definition at line 29 of file test_gaussian.py.

29def test_Gaussian():
30 gauss0 = g2d.Gaussian()
31 assert gauss0 == g2d.Gaussian()
32 centroid = g2d.Centroid()
33 ellipse = g2d.Ellipse()
34 gauss1 = g2d.Gaussian(centroid, ellipse)
35 gauss2 = g2d.Gaussian(centroid, ellipse, g2d.GaussianIntegralValue(2))
36 gauss2.integral_value = gauss1.integral_value
37 assert gauss1 == gauss2
38
39 centroid.x = 1
40 assert gauss1.centroid is centroid
41 kwargs = {
42 "str_values_cen": "CentroidValues(x=1.000000e+00, y=0.000000e+00)",
43 "str_values_ell": "EllipseValues(sigma_x=0.000000e+00, sigma_y=0.000000e+00, rho=0.000000e+00)",
44 "str_integral": "GaussianIntegralValue(value=1.000000e+00)",
45 }
46 str_gauss_format = (
47 "{prefix_namespace}Gaussian(centroid={prefix_namespace}Centroid(data={prefix_namespace}"
48 "{str_values_cen}), ellipse={prefix_namespace}Ellipse(data={prefix_namespace}{str_values_ell}), "
49 "integral={prefix_namespace}{str_integral})"
50 )
51 assert str(gauss1) == str_gauss_format.format(prefix_namespace="", **kwargs)
52 assert repr(gauss1) == str_gauss_format.format(prefix_namespace=prefix_namespace, **kwargs)
53
54
A 2D coordinate representing the center of a plane figure.
Definition centroid.h:114
A GaussianIntegral storing a float value.
Definition gaussian.h:72

◆ test_Gaussians()

test_gaussian.test_Gaussians ( )

Definition at line 55 of file test_gaussian.py.

55def test_Gaussians():
56 gauss1 = g2d.Gaussian()
57 gs = g2d.Gaussians([gauss1, gauss1])
58 assert gs.at(0) == gs.at(1)
59 with pytest.raises(IndexError):
60 gs.at(2)
61 for idx in range(len(gs)):
62 assert gs.at(idx) == gauss1
63
64 str_g1 = str(gauss1)
65 str_gs = f"Gaussians(data=[{str_g1}, {str_g1}])"
66 assert str(gs) == str_gs
67
68
69@pytest.fixture(scope="module")
An array of Gaussian objects.
Definition gaussian.h:175

Variable Documentation

◆ prefix_namespace

str test_gaussian.prefix_namespace = "lsst.gauss2d."

Definition at line 26 of file test_gaussian.py.