LSST Applications g04e9c324dd+8c5ae1fdc5,g134cb467dc+b203dec576,g18429d2f64+358861cd2c,g199a45376c+0ba108daf9,g1fd858c14a+dd066899e3,g262e1987ae+ebfced1d55,g29ae962dfc+72fd90588e,g2cef7863aa+aef1011c0b,g35bb328faa+8c5ae1fdc5,g3fd5ace14f+b668f15bc5,g4595892280+3897dae354,g47891489e3+abcf9c3559,g4d44eb3520+fb4ddce128,g53246c7159+8c5ae1fdc5,g67b6fd64d1+abcf9c3559,g67fd3c3899+1f72b5a9f7,g74acd417e5+cb6b47f07b,g786e29fd12+668abc6043,g87389fa792+8856018cbb,g89139ef638+abcf9c3559,g8d7436a09f+bcf525d20c,g8ea07a8fe4+9f5ccc88ac,g90f42f885a+6054cc57f1,g97be763408+06f794da49,g9dd6db0277+1f72b5a9f7,ga681d05dcb+7e36ad54cd,gabf8522325+735880ea63,gac2eed3f23+abcf9c3559,gb89ab40317+abcf9c3559,gbf99507273+8c5ae1fdc5,gd8ff7fe66e+1f72b5a9f7,gdab6d2f7ff+cb6b47f07b,gdc713202bf+1f72b5a9f7,gdfd2d52018+8225f2b331,ge365c994fd+375fc21c71,ge410e46f29+abcf9c3559,geaed405ab2+562b3308c0,gf9a733ac38+8c5ae1fdc5,w.2025.35
LSST Data Management Base Package
Loading...
Searching...
No Matches
observation.cc File Reference
#include <memory>
#include <string>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include "lsst/gauss2d/fit/observation.h"
#include "lsst/gauss2d/fit/parametric.h"
#include "lsst/gauss2d/python/image.h"
#include "pybind11.h"

Go to the source code of this file.

Functions

template<typename T>
void declare_observation (py::module &m, std::string str_type)
 
void bind_observation (py::module &m)
 

Function Documentation

◆ bind_observation()

void bind_observation ( py::module & m)

Definition at line 64 of file observation.cc.

64 {
67}
void declare_observation(py::module &m, std::string str_type)

◆ declare_observation()

template<typename T>
void declare_observation ( py::module & m,
std::string str_type )

Definition at line 43 of file observation.cc.

43 {
44 typedef g2p::Image<T> Image;
45 typedef g2p::Image<bool> Mask;
46 typedef g2f::Observation<T, Image, Mask> Observation;
47 std::string pyclass_name = std::string("Observation") + str_type;
48 py::classh<Observation, g2f::Parametric>(m, pyclass_name.c_str())
50 const g2f::Channel &>(),
51 "image"_a, "sigma_inv"_a, "mask_inv"_a, "channel"_a)
52 .def_property_readonly("channel", &Observation::get_channel)
53 .def_property_readonly("image", &Observation::get_image)
54 .def_property_readonly("mask_inv", &Observation::get_mask_inverse)
55 .def_property_readonly("sigma_inv", &Observation::get_sigma_inverse)
56 .def_property_readonly("n_cols", &Observation::get_n_cols)
57 .def_property_readonly("n_rows", &Observation::get_n_rows)
58 .def("parameters", &Observation::get_parameters, "parameters"_a = g2f::ParamRefs(),
59 "paramfilter"_a = nullptr)
60 .def("__repr__", [](const Observation &self) { return self.repr(true); })
61 .def("__str__", &Observation::str);
62}
T c_str(T... args)
An observational channel, usually representing some range of wavelengths of light.
Definition channel.h:29
An observed single-channel image with an associated variance and mask.
Definition observation.h:35
A Python image using numpy arrrays for storage.
Definition image.h:72
std::vector< ParamBaseRef > ParamRefs
Definition param_defs.h:13
g2d::python::Image< double > Image
Definition test_image.cc:14
g2d::python::Image< bool > Mask
Definition test_image.cc:16