LSST Applications g00274db5b6+edbf708997,g00d0e8bbd7+edbf708997,g199a45376c+5137f08352,g1fd858c14a+1d4b6db739,g262e1987ae+f4d9505c4f,g29ae962dfc+7156fb1a53,g2cef7863aa+73c82f25e4,g35bb328faa+edbf708997,g3e17d7035e+5b3adc59f5,g3fd5ace14f+852fa6fbcb,g47891489e3+6dc8069a4c,g53246c7159+edbf708997,g64539dfbff+9f17e571f4,g67b6fd64d1+6dc8069a4c,g74acd417e5+ae494d68d9,g786e29fd12+af89c03590,g7ae74a0b1c+a25e60b391,g7aefaa3e3d+536efcc10a,g7cc15d900a+d121454f8d,g87389fa792+a4172ec7da,g89139ef638+6dc8069a4c,g8d7436a09f+28c28d8d6d,g8ea07a8fe4+db21c37724,g92c671f44c+9f17e571f4,g98df359435+b2e6376b13,g99af87f6a8+b0f4ad7b8d,gac66b60396+966efe6077,gb88ae4c679+7dec8f19df,gbaa8f7a6c5+38b34f4976,gbf99507273+edbf708997,gc24b5d6ed1+9f17e571f4,gca7fc764a6+6dc8069a4c,gcc769fe2a4+97d0256649,gd7ef33dd92+6dc8069a4c,gdab6d2f7ff+ae494d68d9,gdbb4c4dda9+9f17e571f4,ge410e46f29+6dc8069a4c,geaed405ab2+e194be0d2b,w.2025.47
LSST Data Management Base Package
Loading...
Searching...
No Matches
observation.cc File Reference
#include <memory>
#include <string>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include "lsst/gauss2d/fit/observation.h"
#include "lsst/gauss2d/fit/parametric.h"
#include "lsst/gauss2d/python/image.h"
#include "pybind11.h"

Go to the source code of this file.

Functions

template<typename T>
void declare_observation (py::module &m, std::string str_type)
 
void bind_observation (py::module &m)
 

Function Documentation

◆ bind_observation()

void bind_observation ( py::module & m)

Definition at line 64 of file observation.cc.

64 {
67}
void declare_observation(py::module &m, std::string str_type)

◆ declare_observation()

template<typename T>
void declare_observation ( py::module & m,
std::string str_type )

Definition at line 43 of file observation.cc.

43 {
44 typedef g2p::Image<T> Image;
45 typedef g2p::Image<bool> Mask;
46 typedef g2f::Observation<T, Image, Mask> Observation;
47 std::string pyclass_name = std::string("Observation") + str_type;
48 py::classh<Observation, g2f::Parametric>(m, pyclass_name.c_str())
50 const g2f::Channel &>(),
51 "image"_a, "sigma_inv"_a, "mask_inv"_a, "channel"_a)
52 .def_property_readonly("channel", &Observation::get_channel)
53 .def_property_readonly("image", &Observation::get_image)
54 .def_property_readonly("mask_inv", &Observation::get_mask_inverse)
55 .def_property_readonly("sigma_inv", &Observation::get_sigma_inverse)
56 .def_property_readonly("n_cols", &Observation::get_n_cols)
57 .def_property_readonly("n_rows", &Observation::get_n_rows)
58 .def("parameters", &Observation::get_parameters, "parameters"_a = g2f::ParamRefs(),
59 "paramfilter"_a = nullptr)
60 .def("__repr__", [](const Observation &self) { return self.repr(true); })
61 .def("__str__", &Observation::str);
62}
T c_str(T... args)
An observational channel, usually representing some range of wavelengths of light.
Definition channel.h:29
An observed single-channel image with an associated variance and mask.
Definition observation.h:35
A Python image using numpy arrrays for storage.
Definition image.h:72
std::vector< ParamBaseRef > ParamRefs
Definition param_defs.h:13
g2d::python::Image< double > Image
Definition test_image.cc:14
g2d::python::Image< bool > Mask
Definition test_image.cc:16