Loading [MathJax]/extensions/tex2jax.js
LSST Applications g0d33ba9806+b932483eba,g0fba68d861+d53f2a615d,g1e78f5e6d3+1e869f36eb,g1ec0fe41b4+f536777771,g1fd858c14a+d5f4961c99,g35bb328faa+fcb1d3bbc8,g4af146b050+2e821d8f6b,g4d2262a081+b02c98aa00,g53246c7159+fcb1d3bbc8,g5a012ec0e7+b20b785ecb,g60b5630c4e+b932483eba,g67b6fd64d1+4086c0989b,g78460c75b0+2f9a1b4bcd,g786e29fd12+cf7ec2a62a,g7b71ed6315+fcb1d3bbc8,g87b7deb4dc+7d8c31d03d,g8852436030+a639f189fc,g89139ef638+4086c0989b,g9125e01d80+fcb1d3bbc8,g94187f82dc+b932483eba,g989de1cb63+4086c0989b,g9f33ca652e+898eabdf38,g9f7030ddb1+b068313d7a,ga2b97cdc51+b932483eba,ga44b1db4f6+2bd830756e,gabe3b4be73+1e0a283bba,gabf8522325+fa80ff7197,gb1101e3267+f4f1608365,gb58c049af0+f03b321e39,gb89ab40317+4086c0989b,gcf25f946ba+a639f189fc,gd6cbbdb0b4+af3c3595f5,gd9a9a58781+fcb1d3bbc8,gde0f65d7ad+4078fef7e5,ge278dab8ac+d65b3c2b70,ge410e46f29+4086c0989b,gf67bdafdda+4086c0989b,gfe06eef73a+6e83fc67a4,v29.0.0.rc5
LSST Data Management Base Package
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
operators_pybind11.cc File Reference
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
#include <pybind11/stl.h>
#include <pybind11/eigen.h>
#include <math.h>
#include <algorithm>
#include <queue>

Go to the source code of this file.

Typedefs

typedef Eigen::Array< int, Eigen::Dynamic, 1 > IndexVector
 
typedef Eigen::Array< int, 4, 1 > Bounds
 
typedef Eigen::Matrix< bool, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor > MatrixB
 

Functions

template<typename T, typename M>
void new_monotonicity (Eigen::Ref< const IndexVector > coord_y, Eigen::Ref< const IndexVector > coord_x, std::vector< M > weights, Eigen::Ref< M, 0, Eigen::Stride< Eigen::Dynamic, Eigen::Dynamic > > image)
 
template<typename T, typename M, typename V>
void prox_weighted_monotonic (Eigen::Ref< V > flat_img, Eigen::Ref< const M > weights, Eigen::Ref< const IndexVector > offsets, Eigen::Ref< const IndexVector > dist_idx, T const &min_gradient)
 
template<typename M, typename V>
void apply_filter (Eigen::Ref< const M > image, Eigen::Ref< const V > values, Eigen::Ref< const IndexVector > y_start, Eigen::Ref< const IndexVector > y_end, Eigen::Ref< const IndexVector > x_start, Eigen::Ref< const IndexVector > x_end, Eigen::Ref< M, 0, Eigen::Stride< Eigen::Dynamic, Eigen::Dynamic > > result)
 
template<typename M>
void get_valid_monotonic_pixels (const int start_i, const int start_j, Eigen::Ref< M, 0, Eigen::Stride< Eigen::Dynamic, Eigen::Dynamic > > image, Eigen::Ref< MatrixB, 0, Eigen::Stride< Eigen::Dynamic, Eigen::Dynamic > > unchecked, Eigen::Ref< MatrixB, 0, Eigen::Stride< Eigen::Dynamic, Eigen::Dynamic > > orphans, const double variance, Eigen::Ref< Bounds, 0, Eigen::Stride< 4, 1 > > bounds, const double thresh=0)
 
template<typename M, typename P>
void linear_interpolate_invalid_pixels (Eigen::Ref< const IndexVector > row_indices, Eigen::Ref< const IndexVector > column_indices, Eigen::Ref< MatrixB, 0, Eigen::Stride< Eigen::Dynamic, Eigen::Dynamic > > unchecked, Eigen::Ref< M, 0, Eigen::Stride< Eigen::Dynamic, Eigen::Dynamic > > model, Eigen::Ref< MatrixB, 0, Eigen::Stride< Eigen::Dynamic, Eigen::Dynamic > > orphans, const double variance, bool recursive, Eigen::Ref< Bounds, 0, Eigen::Stride< 4, 1 > > bounds)
 
 PYBIND11_MODULE (operators_pybind11, mod)
 

Typedef Documentation

◆ Bounds

typedef Eigen::Array<int, 4, 1> Bounds

Definition at line 12 of file operators_pybind11.cc.

◆ IndexVector

typedef Eigen::Array<int, Eigen::Dynamic, 1> IndexVector

Definition at line 11 of file operators_pybind11.cc.

◆ MatrixB

typedef Eigen::Matrix<bool, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> MatrixB

Definition at line 13 of file operators_pybind11.cc.

Function Documentation

◆ apply_filter()

template<typename M, typename V>
void apply_filter ( Eigen::Ref< const M > image,
Eigen::Ref< const V > values,
Eigen::Ref< const IndexVector > y_start,
Eigen::Ref< const IndexVector > y_end,
Eigen::Ref< const IndexVector > x_start,
Eigen::Ref< const IndexVector > x_end,
Eigen::Ref< M, 0, Eigen::Stride< Eigen::Dynamic, Eigen::Dynamic > > result )

Definition at line 63 of file operators_pybind11.cc.

71 {
72 result.setZero();
73 for(int n=0; n<values.size(); n++){
74 int rows = image.rows()-y_start(n)-y_end(n);
75 int cols = image.cols()-x_start(n)-x_end(n);
76 result.block(y_start(n), x_start(n), rows, cols) +=
77 values(n) * image.block(y_end(n), x_end(n), rows, cols);
78 }
79}

◆ get_valid_monotonic_pixels()

template<typename M>
void get_valid_monotonic_pixels ( const int start_i,
const int start_j,
Eigen::Ref< M, 0, Eigen::Stride< Eigen::Dynamic, Eigen::Dynamic > > image,
Eigen::Ref< MatrixB, 0, Eigen::Stride< Eigen::Dynamic, Eigen::Dynamic > > unchecked,
Eigen::Ref< MatrixB, 0, Eigen::Stride< Eigen::Dynamic, Eigen::Dynamic > > orphans,
const double variance,
Eigen::Ref< Bounds, 0, Eigen::Stride< 4, 1 > > bounds,
const double thresh = 0 )

Definition at line 85 of file operators_pybind11.cc.

94 {
95 // Create a queue to store pixels that need to be processed
97 pixel_queue.push({start_i, start_j});
98
99 // Define directions: down, up, left, right
100 const int di[] = {-1, 1, 0, 0};
101 const int dj[] = {0, 0, -1, 1};
102
103 // Define image dimensions
104 const int nrows = image.rows();
105 const int ncols = image.cols();
106
107 while (!pixel_queue.empty()) {
108 auto [i, j] = pixel_queue.front();
109 pixel_queue.pop();
110
111 const auto image_i_j_var = image(i, j) + variance;
112
113 // Check all four directions
114 for (int dir = 0; dir < 4; dir++) {
115 int ni = i + di[dir];
116 int nj = j + dj[dir];
117
118 // Check bounds
119 if ((ni < 0) || (ni >= nrows) || (nj < 0) || (nj >= ncols)) {
120 continue;
121 }
122
123 const auto image_ni_nj = image(ni, nj);
124
125 // Check if pixel needs to be processed
126 if (!unchecked(ni, nj)) {
127 continue;
128 }
129
130 // Check monotonicity condition
131 if (image_ni_nj <= image_i_j_var && (image_ni_nj > thresh)) {
132 // Mark as checked and not orphaned
133 unchecked(ni, nj) = false;
134 orphans(ni, nj) = false;
135
136 // Update bounds
137 if (dir == 0 && ni < bounds(0)) { // down
138 bounds(0) = ni;
139 } else if (dir == 1 && ni > bounds(1)) { // up
140 bounds(1) = ni;
141 } else if (dir == 2 && nj < bounds(2)) { // left
142 bounds(2) = nj;
143 } else if (dir == 3 && nj > bounds(3)) { // right
144 bounds(3) = nj;
145 }
146
147 // Add to queue for processing
148 pixel_queue.push({ni, nj});
149 } else {
150 orphans(ni, nj) = true;
151 }
152 }
153 }
154}
T empty(T... args)
T front(T... args)
T pop(T... args)
T push(T... args)

◆ linear_interpolate_invalid_pixels()

template<typename M, typename P>
void linear_interpolate_invalid_pixels ( Eigen::Ref< const IndexVector > row_indices,
Eigen::Ref< const IndexVector > column_indices,
Eigen::Ref< MatrixB, 0, Eigen::Stride< Eigen::Dynamic, Eigen::Dynamic > > unchecked,
Eigen::Ref< M, 0, Eigen::Stride< Eigen::Dynamic, Eigen::Dynamic > > model,
Eigen::Ref< MatrixB, 0, Eigen::Stride< Eigen::Dynamic, Eigen::Dynamic > > orphans,
const double variance,
bool recursive,
Eigen::Ref< Bounds, 0, Eigen::Stride< 4, 1 > > bounds )

Definition at line 158 of file operators_pybind11.cc.

167 {
168 for(int n=0; n<row_indices.size(); n++){
169 int i = row_indices(n);
170 int j = column_indices(n);
171 P neighborTotal = 0.0;
172 int validNeighbors = 0;
173 bool uncheckedNeighbors = false;
174
175 if(!unchecked(i,j)){
176 // This pixel has already been updated
177 continue;
178 }
179 // Even if this orphan cannot be updated, we remove it from unchecked
180 // so that it isn't attempted again in future iterations.
181 unchecked(i,j) = false;
182
183 // Check all of the neighboring pixels with negative gradients and
184 // use the maximum value for the interpolation
185 if(i < model.rows()-2 && model(i+2,j) > model(i+1,j)){
186 if(unchecked(i+2, j) || unchecked(i+1, j)){
187 uncheckedNeighbors = true;
188 } else {
189 P grad = model(i+2,j) - model(i+1,j);
190 neighborTotal += model(i+1,j)-grad;
191 validNeighbors += 1;
192 }
193 }
194 if(i > 2 && model(i-2,j) > model(i-1,j)){
195 if(unchecked(i-2, j) || unchecked(i-1, j)){
196 uncheckedNeighbors = true;
197 } else {
198 P grad = model(i-2,j) - model(i-1,j);
199 neighborTotal += model(i-1,j)-grad;
200 validNeighbors += 1;
201 }
202 }
203 if(j < model.cols()-2 && model(i,j+2) > model(i,j+1)){
204 if(unchecked(i,j+2), unchecked(i,j+1)){
205 uncheckedNeighbors = true;
206 } else {
207 P grad = model(i,j+2) - model(i,j+1);
208 neighborTotal += model(i,j+1)-grad;
209 validNeighbors += 1;
210 }
211 }
212 if(j > 2 && model(i,j-2) > model(i,j-1)){
213 if(unchecked(i, j-2), unchecked(i,j-1)){
214 uncheckedNeighbors = true;
215 } else {
216 P grad = model(i,j-2) - model(i,j-1);
217 neighborTotal += model(i,j-1)-grad;
218 validNeighbors += 1;
219 }
220 }
221 // If the non-monotonic pixel was updated then update the
222 // model with the interpolated value and search for more monotonic pixels
223 if(neighborTotal > 0){
224 // Update the model and orphan status _before_ checking neighbors
225 model(i,j) = neighborTotal / validNeighbors;
226 orphans(i,j) = false;
227
228 if(i < bounds(0)){
229 bounds(0) = i;
230 } else if(i > bounds(1)){
231 bounds(1) = i;
232 }
233 if(j < bounds(2)){
234 bounds(2) = j;
235 } else if(j > bounds(3)){
236 bounds(3) = j;
237 }
238 if(recursive){
239 get_valid_monotonic_pixels(i, j, model, unchecked, orphans, variance, bounds);
240 } else {
241 if(unchecked(i-1,j)){
242 orphans(i-1,j) = true;
243 }
244 if(unchecked(i+1,j)){
245 orphans(i+1,j) = true;
246 }
247 if(unchecked(i,j-1)){
248 orphans(i,j-1) = true;
249 }
250 if(unchecked(i,j+1)){
251 orphans(i,j+1) = true;
252 }
253 }
254 } else if(uncheckedNeighbors){
255 unchecked(i,j) = false;
256 } else {
257 // This is still an orphan, but we checked it so it won't be iterated on again.
258 orphans(i,j) = true;
259 model(i,j) = 0;
260 }
261 }
262}
model(data, psfmodels, sources)
void get_valid_monotonic_pixels(const int start_i, const int start_j, Eigen::Ref< M, 0, Eigen::Stride< Eigen::Dynamic, Eigen::Dynamic > > image, Eigen::Ref< MatrixB, 0, Eigen::Stride< Eigen::Dynamic, Eigen::Dynamic > > unchecked, Eigen::Ref< MatrixB, 0, Eigen::Stride< Eigen::Dynamic, Eigen::Dynamic > > orphans, const double variance, Eigen::Ref< Bounds, 0, Eigen::Stride< 4, 1 > > bounds, const double thresh=0)

◆ new_monotonicity()

template<typename T, typename M>
void new_monotonicity ( Eigen::Ref< const IndexVector > coord_y,
Eigen::Ref< const IndexVector > coord_x,
std::vector< M > weights,
Eigen::Ref< M, 0, Eigen::Stride< Eigen::Dynamic, Eigen::Dynamic > > image )

Definition at line 16 of file operators_pybind11.cc.

21 {
22 for(int n=0; n<coord_x.size(); n++){
23 int px = coord_x[n];
24 int py = coord_y[n];
25
26 T ref_flux = 0;
27 for(int i=0; i<3; i++){
28 for(int j=0; j<3; j++){
29 int weight_index = 3*i + j;
30 ref_flux += image(py + i, px + j) * weights[weight_index](py, px);
31 }
32 }
33 image(py + 1, px + 1) = std::min(image(py+1, px+1), ref_flux);
34 }
35}
T min(T... args)

◆ prox_weighted_monotonic()

template<typename T, typename M, typename V>
void prox_weighted_monotonic ( Eigen::Ref< V > flat_img,
Eigen::Ref< const M > weights,
Eigen::Ref< const IndexVector > offsets,
Eigen::Ref< const IndexVector > dist_idx,
T const & min_gradient )

Definition at line 38 of file operators_pybind11.cc.

45 {
46 // Start at the center of the image and set each pixel to the minimum
47 // between itself and its reference pixel (which is closer to the peak)
48 for(int d=0; d<dist_idx.size(); d++){
49 int didx = dist_idx(d);
50 T ref_flux = 0;
51 for(int i=0; i<offsets.size(); i++){
52 if(weights(i,didx)>0){
53 int nidx = offsets[i] + didx;
54 ref_flux += flat_img(nidx) * weights(i, didx);
55 }
56 }
57 flat_img(didx) = std::min(flat_img(didx), ref_flux*(1-min_gradient));
58 }
59}

◆ PYBIND11_MODULE()

PYBIND11_MODULE ( operators_pybind11 ,
mod  )

Definition at line 264 of file operators_pybind11.cc.

265{
266 mod.doc() = "operators_pybind11", "Fast proximal operators";
267
268 typedef Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> MatrixF;
269 typedef Eigen::Matrix<float, Eigen::Dynamic, 1> VectorF;
270 typedef Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> MatrixD;
271 typedef Eigen::Matrix<double, Eigen::Dynamic, 1> VectorD;
272
273 mod.def("new_monotonicity", &new_monotonicity<float, MatrixF>, "Weighted Monotonic Proximal Operator");
274 mod.def("new_monotonicity", &new_monotonicity<double, MatrixD>, "Weighted Monotonic Proximal Operator");
275
276 mod.def("prox_weighted_monotonic", &prox_weighted_monotonic<float, MatrixF, VectorF>,
277 "Weighted Monotonic Proximal Operator");
278 mod.def("prox_weighted_monotonic", &prox_weighted_monotonic<double, MatrixD, VectorD>,
279 "Weighted Monotonic Proximal Operator");
280
281 mod.def("apply_filter", &apply_filter<MatrixF, VectorF>, "Apply a filter to a 2D image");
282 mod.def("apply_filter", &apply_filter<MatrixD, VectorD>, "Apply a filter to a 2D image");
283
284 mod.def("get_valid_monotonic_pixels", &get_valid_monotonic_pixels<MatrixF>,
285 "Create a boolean mask for pixels that are monotonic from the center along some path");
286 mod.def("get_valid_monotonic_pixels", &get_valid_monotonic_pixels<MatrixD>,
287 "Create a boolean mask for pixels that are monotonic from the center along some path");
288
289 mod.def("linear_interpolate_invalid_pixels", &linear_interpolate_invalid_pixels<MatrixF, float>,
290 "Fill in non-monotonic pixels by interpolating based on the gradients of its neighbors");
291 mod.def("linear_interpolate_invalid_pixels", &linear_interpolate_invalid_pixels<MatrixD, double>,
292 "Fill in non-monotonic pixels by interpolating based on the gradients of its neighbors");
293}
void new_monotonicity(Eigen::Ref< const IndexVector > coord_y, Eigen::Ref< const IndexVector > coord_x, std::vector< M > weights, Eigen::Ref< M, 0, Eigen::Stride< Eigen::Dynamic, Eigen::Dynamic > > image)
void prox_weighted_monotonic(Eigen::Ref< V > flat_img, Eigen::Ref< const M > weights, Eigen::Ref< const IndexVector > offsets, Eigen::Ref< const IndexVector > dist_idx, T const &min_gradient)
void apply_filter(Eigen::Ref< const M > image, Eigen::Ref< const V > values, Eigen::Ref< const IndexVector > y_start, Eigen::Ref< const IndexVector > y_end, Eigen::Ref< const IndexVector > x_start, Eigen::Ref< const IndexVector > x_end, Eigen::Ref< M, 0, Eigen::Stride< Eigen::Dynamic, Eigen::Dynamic > > result)
void linear_interpolate_invalid_pixels(Eigen::Ref< const IndexVector > row_indices, Eigen::Ref< const IndexVector > column_indices, Eigen::Ref< MatrixB, 0, Eigen::Stride< Eigen::Dynamic, Eigen::Dynamic > > unchecked, Eigen::Ref< M, 0, Eigen::Stride< Eigen::Dynamic, Eigen::Dynamic > > model, Eigen::Ref< MatrixB, 0, Eigen::Stride< Eigen::Dynamic, Eigen::Dynamic > > orphans, const double variance, bool recursive, Eigen::Ref< Bounds, 0, Eigen::Stride< 4, 1 > > bounds)