LSST Applications g063fba187b+cac8b7c890,g0f08755f38+6aee506743,g1653933729+a8ce1bb630,g168dd56ebc+a8ce1bb630,g1a2382251a+b4475c5878,g1dcb35cd9c+8f9bc1652e,g20f6ffc8e0+6aee506743,g217e2c1bcf+73dee94bd0,g28da252d5a+1f19c529b9,g2bbee38e9b+3f2625acfc,g2bc492864f+3f2625acfc,g3156d2b45e+6e55a43351,g32e5bea42b+1bb94961c2,g347aa1857d+3f2625acfc,g35bb328faa+a8ce1bb630,g3a166c0a6a+3f2625acfc,g3e281a1b8c+c5dd892a6c,g3e8969e208+a8ce1bb630,g414038480c+5927e1bc1e,g41af890bb2+8a9e676b2a,g7af13505b9+809c143d88,g80478fca09+6ef8b1810f,g82479be7b0+f568feb641,g858d7b2824+6aee506743,g89c8672015+f4add4ffd5,g9125e01d80+a8ce1bb630,ga5288a1d22+2903d499ea,gb58c049af0+d64f4d3760,gc28159a63d+3f2625acfc,gcab2d0539d+b12535109e,gcf0d15dbbd+46a3f46ba9,gda6a2b7d83+46a3f46ba9,gdaeeff99f8+1711a396fd,ge79ae78c31+3f2625acfc,gef2f8181fd+0a71e47438,gf0baf85859+c1f95f4921,gfa517265be+6aee506743,gfa999e8aa5+17cd334064,w.2024.51
LSST Data Management Base Package
Loading...
Searching...
No Matches
processCcdWithFakes.py
Go to the documentation of this file.
1# This file is part of pipe_tasks.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
21
22"""
23Insert fake sources into calexps
24"""
25
26__all__ = ["ProcessCcdWithFakesConfig", "ProcessCcdWithFakesTask",
27 "ProcessCcdWithVariableFakesConfig", "ProcessCcdWithVariableFakesTask"]
28
29import numpy as np
30import pandas as pd
31
32import lsst.pex.config as pexConfig
33import lsst.pipe.base as pipeBase
34
35from .insertFakes import InsertFakesTask
36from lsst.afw.table import SourceTable
37from lsst.meas.base import IdGenerator, DetectorVisitIdGeneratorConfig
38from lsst.pipe.base import PipelineTask, PipelineTaskConfig, PipelineTaskConnections
39import lsst.pipe.base.connectionTypes as cT
40import lsst.afw.table as afwTable
41from lsst.skymap import BaseSkyMap
42from lsst.pipe.tasks.calibrate import CalibrateTask
43
44from deprecated.sphinx import deprecated
45
46
47class ProcessCcdWithFakesConnections(PipelineTaskConnections,
48 dimensions=("instrument", "visit", "detector"),
49 defaultTemplates={"coaddName": "deep",
50 "wcsName": "gbdesAstrometricFit",
51 "photoCalibName": "jointcal",
52 "fakesType": "fakes_"}):
53 skyMap = cT.Input(
54 doc="Input definition of geometry/bbox and projection/wcs for "
55 "template exposures. Needed to test which tract to generate ",
56 name=BaseSkyMap.SKYMAP_DATASET_TYPE_NAME,
57 dimensions=("skymap",),
58 storageClass="SkyMap",
59 )
60
61 exposure = cT.Input(
62 doc="Exposure into which fakes are to be added.",
63 name="calexp",
64 storageClass="ExposureF",
65 dimensions=("instrument", "visit", "detector")
66 )
67
68 fakeCats = cT.Input(
69 doc="Set of catalogs of fake sources to draw inputs from. We "
70 "concatenate the tract catalogs for detectorVisits that cover "
71 "multiple tracts.",
72 name="{fakesType}fakeSourceCat",
73 storageClass="DataFrame",
74 dimensions=("tract", "skymap"),
75 deferLoad=True,
76 multiple=True,
77 )
78
79 externalSkyWcsTractCatalog = cT.Input(
80 doc=("Per-tract, per-visit wcs calibrations. These catalogs use the detector "
81 "id for the catalog id, sorted on id for fast lookup."),
82 name="{wcsName}SkyWcsCatalog",
83 storageClass="ExposureCatalog",
84 dimensions=("instrument", "visit", "tract", "skymap"),
85 deferLoad=True,
86 multiple=True,
87 )
88
89 externalSkyWcsGlobalCatalog = cT.Input(
90 doc=("Per-visit wcs calibrations computed globally (with no tract information). "
91 "These catalogs use the detector id for the catalog id, sorted on id for "
92 "fast lookup."),
93 name="finalVisitSummary",
94 storageClass="ExposureCatalog",
95 dimensions=("instrument", "visit"),
96 )
97
98 externalPhotoCalibTractCatalog = cT.Input(
99 doc=("Per-tract, per-visit photometric calibrations. These catalogs use the "
100 "detector id for the catalog id, sorted on id for fast lookup."),
101 name="{photoCalibName}PhotoCalibCatalog",
102 storageClass="ExposureCatalog",
103 dimensions=("instrument", "visit", "tract"),
104 deferLoad=True,
105 multiple=True,
106 )
107
108 externalPhotoCalibGlobalCatalog = cT.Input(
109 doc=("Per-visit photometric calibrations. These catalogs use the "
110 "detector id for the catalog id, sorted on id for fast lookup."),
111 name="finalVisitSummary",
112 storageClass="ExposureCatalog",
113 dimensions=("instrument", "visit"),
114 )
115
116 icSourceCat = cT.Input(
117 doc="Catalog of calibration sources",
118 name="icSrc",
119 storageClass="SourceCatalog",
120 dimensions=("instrument", "visit", "detector")
121 )
122
123 sfdSourceCat = cT.Input(
124 doc="Catalog of calibration sources",
125 name="src",
126 storageClass="SourceCatalog",
127 dimensions=("instrument", "visit", "detector")
128 )
129
130 outputExposure = cT.Output(
131 doc="Exposure with fake sources added.",
132 name="{fakesType}calexp",
133 storageClass="ExposureF",
134 dimensions=("instrument", "visit", "detector")
135 )
136
137 outputCat = cT.Output(
138 doc="Source catalog produced in calibrate task with fakes also measured.",
139 name="{fakesType}src",
140 storageClass="SourceCatalog",
141 dimensions=("instrument", "visit", "detector"),
142 )
143
144 def __init__(self, *, config=None):
145 super().__init__(config=config)
146
147 if not config.doApplyExternalGlobalPhotoCalib:
148 self.inputs.remove("externalPhotoCalibGlobalCatalog")
149 if not config.doApplyExternalTractPhotoCalib:
150 self.inputs.remove("externalPhotoCalibTractCatalog")
151
152 if not config.doApplyExternalGlobalSkyWcs:
153 self.inputs.remove("externalSkyWcsGlobalCatalog")
154 if not config.doApplyExternalTractSkyWcs:
155 self.inputs.remove("externalSkyWcsTractCatalog")
156
157
158@deprecated(
159 reason="This task will be removed in v28.0 as it is replaced by `source_injection` tasks.",
160 version="v28.0",
161 category=FutureWarning,
162)
163class ProcessCcdWithFakesConfig(PipelineTaskConfig,
164 pipelineConnections=ProcessCcdWithFakesConnections):
165 """Config for inserting fake sources
166
167 Notes
168 -----
169 The default column names are those from the UW sims database.
170 """
171
172 doApplyExternalGlobalPhotoCalib = pexConfig.Field(
173 dtype=bool,
174 default=False,
175 doc="Whether to apply an external photometric calibration via an "
176 "`lsst.afw.image.PhotoCalib` object. Uses the "
177 "`externalPhotoCalibName` config option to determine which "
178 "calibration to use. Uses a global calibration."
179 )
180
181 doApplyExternalTractPhotoCalib = pexConfig.Field(
182 dtype=bool,
183 default=False,
184 doc="Whether to apply an external photometric calibration via an "
185 "`lsst.afw.image.PhotoCalib` object. Uses the "
186 "`externalPhotoCalibName` config option to determine which "
187 "calibration to use. Uses a per tract calibration."
188 )
189
190 externalPhotoCalibName = pexConfig.ChoiceField(
191 doc="What type of external photo calib to use.",
192 dtype=str,
193 default="jointcal",
194 allowed={"jointcal": "Use jointcal_photoCalib",
195 "fgcm": "Use fgcm_photoCalib",
196 "fgcm_tract": "Use fgcm_tract_photoCalib"}
197 )
198
199 doApplyExternalGlobalSkyWcs = pexConfig.Field(
200 dtype=bool,
201 default=False,
202 doc="Whether to apply an external astrometric calibration via an "
203 "`lsst.afw.geom.SkyWcs` object. Uses the "
204 "`externalSkyWcsName` config option to determine which "
205 "calibration to use. Uses a global calibration."
206 )
207
208 doApplyExternalTractSkyWcs = pexConfig.Field(
209 dtype=bool,
210 default=False,
211 doc="Whether to apply an external astrometric calibration via an "
212 "`lsst.afw.geom.SkyWcs` object. Uses the "
213 "`externalSkyWcsName` config option to determine which "
214 "calibration to use. Uses a per tract calibration."
215 )
216
217 externalSkyWcsName = pexConfig.ChoiceField(
218 doc="What type of updated WCS calib to use.",
219 dtype=str,
220 default="gbdesAstrometricFit",
221 allowed={"gbdesAstrometricFit": "Use gbdesAstrometricFit_wcs"}
222 )
223
224 coaddName = pexConfig.Field(
225 doc="The name of the type of coadd used",
226 dtype=str,
227 default="deep",
228 )
229
230 srcFieldsToCopy = pexConfig.ListField(
231 dtype=str,
232 default=("calib_photometry_reserved", "calib_photometry_used", "calib_astrometry_used",
233 "calib_psf_candidate", "calib_psf_used", "calib_psf_reserved"),
234 doc=("Fields to copy from the `src` catalog to the output catalog "
235 "for matching sources Any missing fields will trigger a "
236 "RuntimeError exception.")
237 )
238
239 matchRadiusPix = pexConfig.Field(
240 dtype=float,
241 default=3,
242 doc=("Match radius for matching icSourceCat objects to sourceCat objects (pixels)"),
243 )
244
245 doMatchVisit = pexConfig.Field(
246 dtype=bool,
247 default=False,
248 doc="Match visit to trim the fakeCat"
249 )
250
251 calibrate = pexConfig.ConfigurableField(target=CalibrateTask,
252 doc="The calibration task to use.")
253
254 insertFakes = pexConfig.ConfigurableField(target=InsertFakesTask,
255 doc="Configuration for the fake sources")
256
257 idGenerator = DetectorVisitIdGeneratorConfig.make_field()
258
259 def setDefaults(self):
260 super().setDefaults()
261 self.calibrate.measurement.plugins["base_PixelFlags"].masksFpAnywhere.append("FAKE")
262 self.calibrate.measurement.plugins["base_PixelFlags"].masksFpCenter.append("FAKE")
263 self.calibrate.doAstrometry = False
264 self.calibrate.doWriteMatches = False
265 self.calibrate.doPhotoCal = False
266 self.calibrate.doComputeSummaryStats = False
267 self.calibrate.detection.reEstimateBackground = False
268
269
270@deprecated(
271 reason="This task will be removed in v28.0 as it is replaced by `source_injection` tasks.",
272 version="v28.0",
273 category=FutureWarning,
274)
275class ProcessCcdWithFakesTask(PipelineTask):
276 """Insert fake objects into calexps.
277
278 Add fake stars and galaxies to the given calexp, specified in the dataRef. Galaxy parameters are read in
279 from the specified file and then modelled using galsim. Re-runs characterize image and calibrate image to
280 give a new background estimation and measurement of the calexp.
281
282 `ProcessFakeSourcesTask` inherits six functions from insertFakesTask that make images of the fake
283 sources and then add them to the calexp.
284
285 `addPixCoords`
286 Use the WCS information to add the pixel coordinates of each source
287 Adds an ``x`` and ``y`` column to the catalog of fake sources.
288 `trimFakeCat`
289 Trim the fake cat to about the size of the input image.
290 `mkFakeGalsimGalaxies`
291 Use Galsim to make fake double sersic galaxies for each set of galaxy parameters in the input file.
292 `mkFakeStars`
293 Use the PSF information from the calexp to make a fake star using the magnitude information from the
294 input file.
295 `cleanCat`
296 Remove rows of the input fake catalog which have half light radius, of either the bulge or the disk,
297 that are 0.
298 `addFakeSources`
299 Add the fake sources to the calexp.
300
301 Notes
302 -----
303 The ``calexp`` with fake souces added to it is written out as the datatype ``calexp_fakes``.
304 """
305
306 _DefaultName = "processCcdWithFakes"
307 ConfigClass = ProcessCcdWithFakesConfig
308
309 def __init__(self, schema=None, **kwargs):
310 """Initalize things! This should go above in the class docstring
311 """
312
313 super().__init__(**kwargs)
314
315 if schema is None:
316 schema = SourceTable.makeMinimalSchema()
317 self.schema = schema
318 self.makeSubtask("insertFakes")
319 self.makeSubtask("calibrate")
320
321 def runQuantum(self, butlerQC, inputRefs, outputRefs):
322 inputs = butlerQC.get(inputRefs)
323 detectorId = inputs["exposure"].getInfo().getDetector().getId()
324
325 if 'idGenerator' not in inputs.keys():
326 inputs['idGenerator'] = self.config.idGenerator.apply(butlerQC.quantum.dataId)
327
328 expWcs = inputs["exposure"].getWcs()
329 tractId = None
330 if not self.config.doApplyExternalGlobalSkyWcs and not self.config.doApplyExternalTractSkyWcs:
331 if expWcs is None:
332 self.log.info("No WCS for exposure %s so cannot insert fake sources. Skipping detector.",
333 butlerQC.quantum.dataId)
334 return None
335 else:
336 inputs["wcs"] = expWcs
337 elif self.config.doApplyExternalGlobalSkyWcs:
338 externalSkyWcsCatalog = inputs["externalSkyWcsGlobalCatalog"]
339 row = externalSkyWcsCatalog.find(detectorId)
340 if row is None:
341 self.log.info("No %s external global sky WCS for exposure %s so cannot insert fake "
342 "sources. Skipping detector.", self.config.externalSkyWcsName,
343 butlerQC.quantum.dataId)
344 return None
345 inputs["wcs"] = row.getWcs()
346 elif self.config.doApplyExternalTractSkyWcs:
347 externalSkyWcsCatalogList = inputs["externalSkyWcsTractCatalog"]
348 if tractId is None:
349 tractId = externalSkyWcsCatalogList[0].dataId["tract"]
350 externalSkyWcsCatalog = None
351 for externalSkyWcsCatalogRef in externalSkyWcsCatalogList:
352 if externalSkyWcsCatalogRef.dataId["tract"] == tractId:
353 externalSkyWcsCatalog = externalSkyWcsCatalogRef.get()
354 break
355 if externalSkyWcsCatalog is None:
356 usedTract = externalSkyWcsCatalogList[-1].dataId["tract"]
357 self.log.warn(
358 f"Warning, external SkyWcs for tract {tractId} not found. Using tract {usedTract} "
359 "instead.")
360 externalSkyWcsCatalog = externalSkyWcsCatalogList[-1].get()
361 row = externalSkyWcsCatalog.find(detectorId)
362 if row is None:
363 self.log.info("No %s external tract sky WCS for exposure %s so cannot insert fake "
364 "sources. Skipping detector.", self.config.externalSkyWcsName,
365 butlerQC.quantum.dataId)
366 return None
367 inputs["wcs"] = row.getWcs()
368
369 if not self.config.doApplyExternalGlobalPhotoCalib and not self.config.doApplyExternalTractPhotoCalib:
370 inputs["photoCalib"] = inputs["exposure"].getPhotoCalib()
371 elif self.config.doApplyExternalGlobalPhotoCalib:
372 externalPhotoCalibCatalog = inputs["externalPhotoCalibGlobalCatalog"]
373 row = externalPhotoCalibCatalog.find(detectorId)
374 if row is None:
375 self.log.info("No %s external global photoCalib for exposure %s so cannot insert fake "
376 "sources. Skipping detector.", self.config.externalPhotoCalibName,
377 butlerQC.quantum.dataId)
378 return None
379 inputs["photoCalib"] = row.getPhotoCalib()
380 elif self.config.doApplyExternalTractPhotoCalib:
381 externalPhotoCalibCatalogList = inputs["externalPhotoCalibTractCatalog"]
382 if tractId is None:
383 tractId = externalPhotoCalibCatalogList[0].dataId["tract"]
384 externalPhotoCalibCatalog = None
385 for externalPhotoCalibCatalogRef in externalPhotoCalibCatalogList:
386 if externalPhotoCalibCatalogRef.dataId["tract"] == tractId:
387 externalPhotoCalibCatalog = externalPhotoCalibCatalogRef.get()
388 break
389 if externalPhotoCalibCatalog is None:
390 usedTract = externalPhotoCalibCatalogList[-1].dataId["tract"]
391 self.log.warn(
392 f"Warning, external PhotoCalib for tract {tractId} not found. Using tract {usedTract} "
393 "instead.")
394 externalPhotoCalibCatalog = externalPhotoCalibCatalogList[-1].get()
395 row = externalPhotoCalibCatalog.find(detectorId)
396 if row is None:
397 self.log.info("No %s external tract photoCalib for exposure %s so cannot insert fake "
398 "sources. Skipping detector.", self.config.externalPhotoCalibName,
399 butlerQC.quantum.dataId)
400 return None
401 inputs["photoCalib"] = row.getPhotoCalib()
402
403 outputs = self.run(**inputs)
404 butlerQC.put(outputs, outputRefs)
405
406 def run(self, fakeCats, exposure, skyMap, wcs=None, photoCalib=None,
407 icSourceCat=None, sfdSourceCat=None, externalSkyWcsGlobalCatalog=None,
408 externalSkyWcsTractCatalog=None, externalPhotoCalibGlobalCatalog=None,
409 externalPhotoCalibTractCatalog=None, idGenerator=None):
410 """Add fake sources to a calexp and then run detection, deblending and
411 measurement.
412
413 Parameters
414 ----------
415 fakeCats : `list` of `lsst.daf.butler.DeferredDatasetHandle`
416 Set of tract level fake catalogs that potentially cover this
417 detectorVisit.
418 exposure : `lsst.afw.image.exposure.exposure.ExposureF`
419 The exposure to add the fake sources to.
420 skyMap : `lsst.skymap.SkyMap`
421 SkyMap defining the tracts and patches the fakes are stored over.
422 wcs : `lsst.afw.geom.SkyWcs`, optional
423 WCS to use to add fake sources.
424 photoCalib : `lsst.afw.image.photoCalib.PhotoCalib`, optional
425 Photometric calibration to be used to calibrate the fake sources.
426 icSourceCat : `lsst.afw.table.SourceCatalog`, optional
427 Catalog to take the information about which sources were used for
428 calibration from.
429 sfdSourceCat : `lsst.afw.table.SourceCatalog`, optional
430 Catalog produced by singleFrameDriver, needed to copy some
431 calibration flags from.
432 externalSkyWcsGlobalCatalog : `lsst.afw.table.ExposureCatalog`, \
433 optional
434 Exposure catalog with external skyWcs to be applied per config.
435 externalSkyWcsTractCatalog : `lsst.afw.table.ExposureCatalog`, optional
436 Exposure catalog with external skyWcs to be applied per config.
437 externalPhotoCalibGlobalCatalog : `lsst.afw.table.ExposureCatalog`, \
438 optional
439 Exposure catalog with external photoCalib to be applied per config
440 externalPhotoCalibTractCatalog : `lsst.afw.table.ExposureCatalog`, \
441 optional
442 Exposure catalog with external photoCalib to be applied per config.
443 idGenerator : `lsst.meas.base.IdGenerator`, optional
444 Object that generates Source IDs and random seeds.
445
446 Returns
447 -------
448 resultStruct : `lsst.pipe.base.struct.Struct`
449 Result struct containing:
450
451 - outputExposure: `lsst.afw.image.exposure.exposure.ExposureF`
452 - outputCat: `lsst.afw.table.source.source.SourceCatalog`
453
454 Notes
455 -----
456 Adds pixel coordinates for each source to the fakeCat and removes
457 objects with bulge or disk half light radius = 0 (if ``config.cleanCat
458 = True``). These columns are called ``x`` and ``y`` and are in pixels.
459
460 Adds the ``Fake`` mask plane to the exposure which is then set by
461 `addFakeSources` to mark where fake sources have been added. Uses the
462 information in the ``fakeCat`` to make fake galaxies (using galsim) and
463 fake stars, using the PSF models from the PSF information for the
464 calexp. These are then added to the calexp and the calexp with fakes
465 included returned.
466
467 The galsim galaxies are made using a double sersic profile, one for the
468 bulge and one for the disk, this is then convolved with the PSF at that
469 point.
470 """
471 fakeCat = self.composeFakeCat(fakeCats, skyMap)
472
473 if wcs is None:
474 wcs = exposure.getWcs()
475
476 if photoCalib is None:
477 photoCalib = exposure.getPhotoCalib()
478
479 if self.config.doMatchVisit:
480 fakeCat = self.getVisitMatchedFakeCat(fakeCat, exposure)
481
482 self.insertFakes.run(fakeCat, exposure, wcs, photoCalib)
483
484 # detect, deblend and measure sources
485 if idGenerator is None:
486 idGenerator = IdGenerator()
487 returnedStruct = self.calibrate.run(exposure, idGenerator=idGenerator)
488 sourceCat = returnedStruct.sourceCat
489
490 sourceCat = self.copyCalibrationFields(sfdSourceCat, sourceCat, self.config.srcFieldsToCopy)
491
492 resultStruct = pipeBase.Struct(outputExposure=exposure, outputCat=sourceCat)
493 return resultStruct
494
495 def composeFakeCat(self, fakeCats, skyMap):
496 """Concatenate the fakeCats from tracts that may cover the exposure.
497
498 Parameters
499 ----------
500 fakeCats : `list` of `lsst.daf.butler.DeferredDatasetHandle`
501 Set of fake cats to concatenate.
502 skyMap : `lsst.skymap.SkyMap`
503 SkyMap defining the geometry of the tracts and patches.
504
505 Returns
506 -------
507 combinedFakeCat : `pandas.DataFrame`
508 All fakes that cover the inner polygon of the tracts in this
509 quantum.
510 """
511 if len(fakeCats) == 1:
512 return fakeCats[0].get()
513 outputCat = []
514 for fakeCatRef in fakeCats:
515 cat = fakeCatRef.get()
516 tractId = fakeCatRef.dataId["tract"]
517 # Make sure all data is within the inner part of the tract.
518 outputCat.append(cat[
519 skyMap.findTractIdArray(cat[self.config.insertFakes.ra_col],
520 cat[self.config.insertFakes.dec_col],
521 degrees=False)
522 == tractId])
523
524 return pd.concat(outputCat)
525
526 def getVisitMatchedFakeCat(self, fakeCat, exposure):
527 """Trim the fakeCat to select particular visit
528
529 Parameters
530 ----------
531 fakeCat : `pandas.core.frame.DataFrame`
532 The catalog of fake sources to add to the exposure
533 exposure : `lsst.afw.image.exposure.exposure.ExposureF`
534 The exposure to add the fake sources to
535
536 Returns
537 -------
538 movingFakeCat : `pandas.DataFrame`
539 All fakes that belong to the visit
540 """
541 selected = exposure.getInfo().getVisitInfo().getId() == fakeCat["visit"]
542
543 return fakeCat[selected]
544
545 def copyCalibrationFields(self, calibCat, sourceCat, fieldsToCopy):
546 """Match sources in calibCat and sourceCat and copy the specified fields
547
548 Parameters
549 ----------
550 calibCat : `lsst.afw.table.SourceCatalog`
551 Catalog from which to copy fields.
552 sourceCat : `lsst.afw.table.SourceCatalog`
553 Catalog to which to copy fields.
554 fieldsToCopy : `lsst.pex.config.listField.List`
555 Fields to copy from calibCat to SoourceCat.
556
557 Returns
558 -------
559 newCat : `lsst.afw.table.SourceCatalog`
560 Catalog which includes the copied fields.
561
562 The fields copied are those specified by `fieldsToCopy` that actually exist
563 in the schema of `calibCat`.
564
565 This version was based on and adapted from the one in calibrateTask.
566 """
567
568 # Make a new SourceCatalog with the data from sourceCat so that we can add the new columns to it
569 sourceSchemaMapper = afwTable.SchemaMapper(sourceCat.schema)
570 sourceSchemaMapper.addMinimalSchema(sourceCat.schema, True)
571
572 calibSchemaMapper = afwTable.SchemaMapper(calibCat.schema, sourceCat.schema)
573
574 # Add the desired columns from the option fieldsToCopy
575 missingFieldNames = []
576 for fieldName in fieldsToCopy:
577 if fieldName in calibCat.schema:
578 schemaItem = calibCat.schema.find(fieldName)
579 calibSchemaMapper.editOutputSchema().addField(schemaItem.getField())
580 schema = calibSchemaMapper.editOutputSchema()
581 calibSchemaMapper.addMapping(schemaItem.getKey(), schema.find(fieldName).getField())
582 else:
583 missingFieldNames.append(fieldName)
584 if missingFieldNames:
585 raise RuntimeError(f"calibCat is missing fields {missingFieldNames} specified in "
586 "fieldsToCopy")
587
588 if "calib_detected" not in calibSchemaMapper.getOutputSchema():
589 self.calibSourceKey = calibSchemaMapper.addOutputField(afwTable.Field["Flag"]("calib_detected",
590 "Source was detected as an icSource"))
591 else:
592 self.calibSourceKey = None
593
594 schema = calibSchemaMapper.getOutputSchema()
595 newCat = afwTable.SourceCatalog(schema)
596 newCat.reserve(len(sourceCat))
597 newCat.extend(sourceCat, sourceSchemaMapper)
598
599 # Set the aliases so it doesn't complain.
600 for k, v in sourceCat.schema.getAliasMap().items():
601 newCat.schema.getAliasMap().set(k, v)
602
603 select = newCat["deblend_nChild"] == 0
604 matches = afwTable.matchXy(newCat[select], calibCat, self.config.matchRadiusPix)
605 # Check that no sourceCat sources are listed twice (we already know
606 # that each match has a unique calibCat source ID, due to using
607 # that ID as the key in bestMatches)
608 numMatches = len(matches)
609 numUniqueSources = len(set(m[1].getId() for m in matches))
610 if numUniqueSources != numMatches:
611 self.log.warning("%d calibCat sources matched only %d sourceCat sources", numMatches,
612 numUniqueSources)
613
614 self.log.info("Copying flags from calibCat to sourceCat for %s sources", numMatches)
615
616 # For each match: set the calibSourceKey flag and copy the desired
617 # fields
618 for src, calibSrc, d in matches:
619 if self.calibSourceKey:
620 src.setFlag(self.calibSourceKey, True)
621 # src.assign copies the footprint from calibSrc, which we don't want
622 # (DM-407)
623 # so set calibSrc's footprint to src's footprint before src.assign,
624 # then restore it
625 calibSrcFootprint = calibSrc.getFootprint()
626 try:
627 calibSrc.setFootprint(src.getFootprint())
628 src.assign(calibSrc, calibSchemaMapper)
629 finally:
630 calibSrc.setFootprint(calibSrcFootprint)
631
632 return newCat
633
634
635class ProcessCcdWithVariableFakesConnections(ProcessCcdWithFakesConnections):
636 ccdVisitFakeMagnitudes = cT.Output(
637 doc="Catalog of fakes with magnitudes scattered for this ccdVisit.",
638 name="{fakesType}ccdVisitFakeMagnitudes",
639 storageClass="DataFrame",
640 dimensions=("instrument", "visit", "detector"),
641 )
642
643
644@deprecated(
645 reason="This task will be removed in v28.0 as it is replaced by `source_injection` tasks.",
646 version="v28.0",
647 category=FutureWarning,
648)
649class ProcessCcdWithVariableFakesConfig(ProcessCcdWithFakesConfig,
650 pipelineConnections=ProcessCcdWithVariableFakesConnections):
651 scatterSize = pexConfig.RangeField(
652 dtype=float,
653 default=0.4,
654 min=0,
655 max=100,
656 doc="Amount of scatter to add to the visit magnitude for variable "
657 "sources."
658 )
659
660
661@deprecated(
662 reason="This task will be removed in v28.0 as it is replaced by `source_injection` tasks.",
663 version="v28.0",
664 category=FutureWarning,
665)
666class ProcessCcdWithVariableFakesTask(ProcessCcdWithFakesTask):
667 """As ProcessCcdWithFakes except add variablity to the fakes catalog
668 magnitude in the observed band for this ccdVisit.
669
670 Additionally, write out the modified magnitudes to the Butler.
671 """
672
673 _DefaultName = "processCcdWithVariableFakes"
674 ConfigClass = ProcessCcdWithVariableFakesConfig
675
676 def run(self, fakeCats, exposure, skyMap, wcs=None, photoCalib=None,
677 icSourceCat=None, sfdSourceCat=None, idGenerator=None):
678 """Add fake sources to a calexp and then run detection, deblending and
679 measurement.
680
681 Parameters
682 ----------
683 fakeCat : `pandas.core.frame.DataFrame`
684 The catalog of fake sources to add to the exposure.
685 exposure : `lsst.afw.image.exposure.exposure.ExposureF`
686 The exposure to add the fake sources to.
687 skyMap : `lsst.skymap.SkyMap`
688 SkyMap defining the tracts and patches the fakes are stored over.
689 wcs : `lsst.afw.geom.SkyWcs`, optional
690 WCS to use to add fake sources.
691 photoCalib : `lsst.afw.image.photoCalib.PhotoCalib`, optional
692 Photometric calibration to be used to calibrate the fake sources.
693 icSourceCat : `lsst.afw.table.SourceCatalog`, optional
694 Catalog to take the information about which sources were used for
695 calibration from.
696 sfdSourceCat : `lsst.afw.table.SourceCatalog`, optional
697 Catalog produced by singleFrameDriver, needed to copy some
698 calibration flags from.
699 idGenerator : `lsst.meas.base.IdGenerator`, optional
700 Object that generates Source IDs and random seeds.
701
702 Returns
703 -------
704 resultStruct : `lsst.pipe.base.struct.Struct`
705 Results struct containing:
706
707 - outputExposure : Exposure with added fakes
708 (`lsst.afw.image.exposure.exposure.ExposureF`)
709 - outputCat : Catalog with detected fakes
710 (`lsst.afw.table.source.source.SourceCatalog`)
711 - ccdVisitFakeMagnitudes : Magnitudes that these fakes were
712 inserted with after being scattered (`pandas.DataFrame`)
713
714 Notes
715 -----
716 Adds pixel coordinates for each source to the fakeCat and removes
717 objects with bulge or disk half light radius = 0 (if ``config.cleanCat
718 = True``). These columns are called ``x`` and ``y`` and are in pixels.
719
720 Adds the ``Fake`` mask plane to the exposure which is then set by
721 `addFakeSources` to mark where fake sources have been added. Uses the
722 information in the ``fakeCat`` to make fake galaxies (using galsim) and
723 fake stars, using the PSF models from the PSF information for the
724 calexp. These are then added to the calexp and the calexp with fakes
725 included returned.
726
727 The galsim galaxies are made using a double sersic profile, one for the
728 bulge and one for the disk, this is then convolved with the PSF at that
729 point.
730
731
732 """
733 fakeCat = self.composeFakeCat(fakeCats, skyMap)
734
735 if wcs is None:
736 wcs = exposure.getWcs()
737
738 if photoCalib is None:
739 photoCalib = exposure.getPhotoCalib()
740
741 if idGenerator is None:
742 idGenerator = IdGenerator()
743
744 band = exposure.getFilter().bandLabel
745 ccdVisitMagnitudes = self.addVariability(
746 fakeCat,
747 band,
748 exposure,
749 photoCalib,
750 idGenerator.catalog_id,
751 )
752
753 self.insertFakes.run(fakeCat, exposure, wcs, photoCalib)
754
755 # detect, deblend and measure sources
756 returnedStruct = self.calibrate.run(exposure, idGenerator=idGenerator)
757 sourceCat = returnedStruct.sourceCat
758
759 sourceCat = self.copyCalibrationFields(sfdSourceCat, sourceCat, self.config.srcFieldsToCopy)
760
761 resultStruct = pipeBase.Struct(outputExposure=exposure,
762 outputCat=sourceCat,
763 ccdVisitFakeMagnitudes=ccdVisitMagnitudes)
764 return resultStruct
765
766 def addVariability(self, fakeCat, band, exposure, photoCalib, rngSeed):
767 """Add scatter to the fake catalog visit magnitudes.
768
769 Currently just adds a simple Gaussian scatter around the static fake
770 magnitude. This function could be modified to return any number of
771 fake variability.
772
773 Parameters
774 ----------
775 fakeCat : `pandas.DataFrame`
776 Catalog of fakes to modify magnitudes of.
777 band : `str`
778 Current observing band to modify.
779 exposure : `lsst.afw.image.ExposureF`
780 Exposure fakes will be added to.
781 photoCalib : `lsst.afw.image.PhotoCalib`
782 Photometric calibration object of ``exposure``.
783 rngSeed : `int`
784 Random number generator seed.
785
786 Returns
787 -------
788 dataFrame : `pandas.DataFrame`
789 DataFrame containing the values of the magnitudes to that will
790 be inserted into this ccdVisit.
791 """
792 rng = np.random.default_rng(rngSeed)
793 magScatter = rng.normal(loc=0,
794 scale=self.config.scatterSize,
795 size=len(fakeCat))
796 visitMagnitudes = fakeCat[self.insertFakes.config.mag_col % band] + magScatter
797 fakeCat.loc[:, self.insertFakes.config.mag_col % band] = visitMagnitudes
798 return pd.DataFrame(data={"variableMag": visitMagnitudes})
std::vector< SchemaItem< Flag > > * items
A mapping between the keys of two Schemas, used to copy data between them.
SourceMatchVector matchXy(SourceCatalog const &cat1, SourceCatalog const &cat2, double radius, MatchControl const &mc=MatchControl())
Compute all tuples (s1,s2,d) where s1 belings to cat1, s2 belongs to cat2 and d, the distance between...
Definition Match.cc:305
A description of a field in a table.
Definition Field.h:24