LSST Applications g0f08755f38+82efc23009,g12f32b3c4e+e7bdf1200e,g1653933729+a8ce1bb630,g1a0ca8cf93+50eff2b06f,g28da252d5a+52db39f6a5,g2bbee38e9b+37c5a29d61,g2bc492864f+37c5a29d61,g2cdde0e794+c05ff076ad,g3156d2b45e+41e33cbcdc,g347aa1857d+37c5a29d61,g35bb328faa+a8ce1bb630,g3a166c0a6a+37c5a29d61,g3e281a1b8c+fb992f5633,g414038480c+7f03dfc1b0,g41af890bb2+11b950c980,g5fbc88fb19+17cd334064,g6b1c1869cb+12dd639c9a,g781aacb6e4+a8ce1bb630,g80478fca09+72e9651da0,g82479be7b0+04c31367b4,g858d7b2824+82efc23009,g9125e01d80+a8ce1bb630,g9726552aa6+8047e3811d,ga5288a1d22+e532dc0a0b,gae0086650b+a8ce1bb630,gb58c049af0+d64f4d3760,gc28159a63d+37c5a29d61,gcf0d15dbbd+2acd6d4d48,gd7358e8bfb+778a810b6e,gda3e153d99+82efc23009,gda6a2b7d83+2acd6d4d48,gdaeeff99f8+1711a396fd,ge2409df99d+6b12de1076,ge79ae78c31+37c5a29d61,gf0baf85859+d0a5978c5a,gf3967379c6+4954f8c433,gfb92a5be7c+82efc23009,gfec2e1e490+2aaed99252,w.2024.46
LSST Data Management Base Package
Loading...
Searching...
No Matches
psfMatch.py
Go to the documentation of this file.
1# This file is part of ip_diffim.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
21
22__all__ = ["DetectionConfig", "PsfMatchConfig", "PsfMatchConfigAL", "PsfMatchConfigDF", "PsfMatchTask"]
23
24import abc
25import time
26
27import numpy as np
28
29import lsst.afw.image as afwImage
30import lsst.pex.config as pexConfig
31import lsst.afw.math as afwMath
32import lsst.afw.display as afwDisplay
33import lsst.pipe.base as pipeBase
34from lsst.meas.algorithms import SubtractBackgroundConfig
35from lsst.utils.logging import getTraceLogger
36from lsst.utils.timer import timeMethod
37from . import utils as diutils
38from . import diffimLib
39
40
41# Remove this class on DM-42980.
42# Not deprecated-decorated to prevent excessive warnings when using PsfMatchTask.
43class DetectionConfig(pexConfig.Config):
44 """Configuration for detecting sources on images for building a
45 PSF-matching kernel
46
47 Configuration for turning detected lsst.afw.detection.FootPrints into an
48 acceptable (unmasked, high signal-to-noise, not too large or not too small)
49 list of `lsst.ip.diffim.KernelSources` that are used to build the
50 Psf-matching kernel"""
51
52 detThreshold = pexConfig.Field(
53 deprecated="This field is no longer used and will be removed after v27.",
54 dtype=float,
55 doc="Value of footprint detection threshold",
56 default=10.0,
57 check=lambda x: x >= 3.0
58 )
59 detThresholdType = pexConfig.ChoiceField(
60 deprecated="This field is no longer used and will be removed after v27.",
61 dtype=str,
62 doc="Type of detection threshold",
63 default="pixel_stdev",
64 allowed={
65 "value": "Use counts as the detection threshold type",
66 "stdev": "Use standard deviation of image plane",
67 "variance": "Use variance of image plane",
68 "pixel_stdev": "Use stdev derived from variance plane"
69 }
70 )
71 detOnTemplate = pexConfig.Field(
72 dtype=bool,
73 doc="""If true run detection on the template (image to convolve);
74 if false run detection on the science image""",
75 deprecated="This field is no longer used and will be removed after v27.",
76 default=True
77 )
78 badMaskPlanes = pexConfig.ListField(
79 dtype=str,
80 doc="""Mask planes that lead to an invalid detection.
81 Options: NO_DATA EDGE SAT BAD CR INTRP""",
82 default=("NO_DATA", "EDGE", "SAT")
83 )
84 fpNpixMin = pexConfig.Field(
85 dtype=int,
86 doc="Minimum number of pixels in an acceptable Footprint",
87 default=5,
88 deprecated="This field is no longer used and will be removed after v27.",
89 check=lambda x: x >= 5
90 )
91 fpNpixMax = pexConfig.Field(
92 dtype=int,
93 doc="""Maximum number of pixels in an acceptable Footprint;
94 too big and the subsequent convolutions become unwieldy""",
95 default=500,
96 deprecated="This field is no longer used and will be removed after v27.",
97 check=lambda x: x <= 500
98 )
99 fpGrowKernelScaling = pexConfig.Field(
100 dtype=float,
101 doc="""If config.scaleByFwhm, grow the footprint based on
102 the final kernelSize. Each footprint will be
103 2*fpGrowKernelScaling*kernelSize x
104 2*fpGrowKernelScaling*kernelSize. With the value
105 of 1.0, the remaining pixels in each KernelCandiate
106 after convolution by the basis functions will be
107 equal to the kernel size itself.""",
108 default=1.0,
109 deprecated="This field is no longer used and will be removed after v27.",
110 check=lambda x: x >= 1.0
111 )
112 fpGrowPix = pexConfig.Field(
113 dtype=int,
114 doc="""Growing radius (in pixels) for each raw detection
115 footprint. The smaller the faster; however the
116 kernel sum does not converge if the stamp is too
117 small; and the kernel is not constrained at all if
118 the stamp is the size of the kernel. The grown stamp
119 is 2 * fpGrowPix pixels larger in each dimension.
120 This is overridden by fpGrowKernelScaling if scaleByFwhm""",
121 default=30,
122 deprecated="This field is no longer used and will be removed after v27.",
123 check=lambda x: x >= 10
124 )
125 scaleByFwhm = pexConfig.Field(
126 dtype=bool,
127 doc="Scale fpGrowPix by input Fwhm?",
128 deprecated="This field is no longer used and will be removed after v27.",
129 default=True,
130 )
131
132
133class PsfMatchConfig(pexConfig.Config):
134 """Base configuration for Psf-matching
135
136 The base configuration of the Psf-matching kernel, and of the warping, detection,
137 and background modeling subTasks."""
138
139 warpingConfig = pexConfig.ConfigField("Config for warping exposures to a common alignment",
141 # Remove this field on DM-42980.
142 detectionConfig = pexConfig.ConfigField(
143 "Controlling the detection of sources for kernel building",
144 DetectionConfig,
145 deprecated="This field is no longer used and will be removed after v27.")
146 afwBackgroundConfig = pexConfig.ConfigField("Controlling the Afw background fitting",
147 SubtractBackgroundConfig)
148
149 useAfwBackground = pexConfig.Field(
150 dtype=bool,
151 doc="Use afw background subtraction instead of ip_diffim",
152 default=False,
153 )
154 fitForBackground = pexConfig.Field(
155 dtype=bool,
156 doc="Include terms (including kernel cross terms) for background in ip_diffim",
157 default=False,
158 )
159 kernelBasisSet = pexConfig.ChoiceField(
160 dtype=str,
161 doc="Type of basis set for PSF matching kernel.",
162 default="alard-lupton",
163 allowed={
164 "alard-lupton": """Alard-Lupton sum-of-gaussians basis set,
165 * The first term has no spatial variation
166 * The kernel sum is conserved
167 * You may want to turn off 'usePcaForSpatialKernel'""",
168 "delta-function": """Delta-function kernel basis set,
169 * You may enable the option useRegularization
170 * You should seriously consider usePcaForSpatialKernel, which will also
171 enable kernel sum conservation for the delta function kernels"""
172 }
173 )
174 kernelSize = pexConfig.Field(
175 dtype=int,
176 doc="""Number of rows/columns in the convolution kernel; should be odd-valued.
177 Modified by kernelSizeFwhmScaling if scaleByFwhm = true""",
178 default=21,
179 )
180 scaleByFwhm = pexConfig.Field(
181 dtype=bool,
182 doc="Scale kernelSize, alardGaussians by input Fwhm",
183 default=True,
184 )
185 kernelSizeFwhmScaling = pexConfig.Field(
186 dtype=float,
187 doc="Multiplier of the largest AL Gaussian basis sigma to get the kernel bbox (pixel) size.",
188 default=6.0,
189 check=lambda x: x >= 1.0
190 )
191 kernelSizeMin = pexConfig.Field(
192 dtype=int,
193 doc="Minimum kernel bbox (pixel) size.",
194 default=21,
195 )
196 kernelSizeMax = pexConfig.Field(
197 dtype=int,
198 doc="Maximum kernel bbox (pixel) size.",
199 default=35,
200 )
201 spatialModelType = pexConfig.ChoiceField(
202 dtype=str,
203 doc="Type of spatial functions for kernel and background",
204 default="chebyshev1",
205 allowed={
206 "chebyshev1": "Chebyshev polynomial of the first kind",
207 "polynomial": "Standard x,y polynomial",
208 }
209 )
210 spatialKernelOrder = pexConfig.Field(
211 dtype=int,
212 doc="Spatial order of convolution kernel variation",
213 default=2,
214 check=lambda x: x >= 0
215 )
216 spatialBgOrder = pexConfig.Field(
217 dtype=int,
218 doc="Spatial order of differential background variation",
219 default=1,
220 check=lambda x: x >= 0
221 )
222 sizeCellX = pexConfig.Field(
223 dtype=int,
224 doc="Size (rows) in pixels of each SpatialCell for spatial modeling",
225 default=128,
226 check=lambda x: x >= 32
227 )
228 sizeCellY = pexConfig.Field(
229 dtype=int,
230 doc="Size (columns) in pixels of each SpatialCell for spatial modeling",
231 default=128,
232 check=lambda x: x >= 32
233 )
234 nStarPerCell = pexConfig.Field(
235 dtype=int,
236 doc="Maximum number of KernelCandidates in each SpatialCell to use in the spatial fitting. "
237 "Set to -1 to use all candidates in each cell.",
238 default=5,
239 )
240 maxSpatialIterations = pexConfig.Field(
241 dtype=int,
242 doc="Maximum number of iterations for rejecting bad KernelCandidates in spatial fitting",
243 default=3,
244 check=lambda x: x >= 1 and x <= 5
245 )
246 usePcaForSpatialKernel = pexConfig.Field(
247 dtype=bool,
248 doc="""Use Pca to reduce the dimensionality of the kernel basis sets.
249 This is particularly useful for delta-function kernels.
250 Functionally, after all Cells have their raw kernels determined, we run
251 a Pca on these Kernels, re-fit the Cells using the eigenKernels and then
252 fit those for spatial variation using the same technique as for Alard-Lupton kernels.
253 If this option is used, the first term will have no spatial variation and the
254 kernel sum will be conserved.""",
255 default=False,
256 )
257 subtractMeanForPca = pexConfig.Field(
258 dtype=bool,
259 doc="Subtract off the mean feature before doing the Pca",
260 default=True,
261 )
262 numPrincipalComponents = pexConfig.Field(
263 dtype=int,
264 doc="""Number of principal components to use for Pca basis, including the
265 mean kernel if requested.""",
266 default=5,
267 check=lambda x: x >= 3
268 )
269 singleKernelClipping = pexConfig.Field(
270 dtype=bool,
271 doc="Do sigma clipping on each raw kernel candidate",
272 default=True,
273 )
274 kernelSumClipping = pexConfig.Field(
275 dtype=bool,
276 doc="Do sigma clipping on the ensemble of kernel sums",
277 default=True,
278 )
279 spatialKernelClipping = pexConfig.Field(
280 dtype=bool,
281 doc="Do sigma clipping after building the spatial model",
282 default=True,
283 )
284 checkConditionNumber = pexConfig.Field(
285 dtype=bool,
286 doc="""Test for maximum condition number when inverting a kernel matrix.
287 Anything above maxConditionNumber is not used and the candidate is set as BAD.
288 Also used to truncate inverse matrix in estimateBiasedRisk. However,
289 if you are doing any deconvolution you will want to turn this off, or use
290 a large maxConditionNumber""",
291 default=False,
292 )
293 badMaskPlanes = pexConfig.ListField(
294 dtype=str,
295 doc="""Mask planes to ignore when calculating diffim statistics
296 Options: NO_DATA EDGE SAT BAD CR INTRP""",
297 default=("NO_DATA", "EDGE", "SAT")
298 )
299 candidateResidualMeanMax = pexConfig.Field(
300 dtype=float,
301 doc="""Rejects KernelCandidates yielding bad difference image quality.
302 Used by BuildSingleKernelVisitor, AssessSpatialKernelVisitor.
303 Represents average over pixels of (image/sqrt(variance)).""",
304 default=0.25,
305 check=lambda x: x >= 0.0
306 )
307 candidateResidualStdMax = pexConfig.Field(
308 dtype=float,
309 doc="""Rejects KernelCandidates yielding bad difference image quality.
310 Used by BuildSingleKernelVisitor, AssessSpatialKernelVisitor.
311 Represents stddev over pixels of (image/sqrt(variance)).""",
312 default=1.50,
313 check=lambda x: x >= 0.0
314 )
315 useCoreStats = pexConfig.Field(
316 dtype=bool,
317 doc="""Use the core of the footprint for the quality statistics, instead of the entire footprint.
318 WARNING: if there is deconvolution we probably will need to turn this off""",
319 default=False,
320 )
321 candidateCoreRadius = pexConfig.Field(
322 dtype=int,
323 doc="""Radius for calculation of stats in 'core' of KernelCandidate diffim.
324 Total number of pixels used will be (2*radius)**2.
325 This is used both for 'core' diffim quality as well as ranking of
326 KernelCandidates by their total flux in this core""",
327 default=3,
328 check=lambda x: x >= 1
329 )
330 maxKsumSigma = pexConfig.Field(
331 dtype=float,
332 doc="""Maximum allowed sigma for outliers from kernel sum distribution.
333 Used to reject variable objects from the kernel model""",
334 default=3.0,
335 check=lambda x: x >= 0.0
336 )
337 maxConditionNumber = pexConfig.Field(
338 dtype=float,
339 doc="Maximum condition number for a well conditioned matrix",
340 default=5.0e7,
341 check=lambda x: x >= 0.0
342 )
343 conditionNumberType = pexConfig.ChoiceField(
344 dtype=str,
345 doc="Use singular values (SVD) or eigen values (EIGENVALUE) to determine condition number",
346 default="EIGENVALUE",
347 allowed={
348 "SVD": "Use singular values",
349 "EIGENVALUE": "Use eigen values (faster)",
350 }
351 )
352 maxSpatialConditionNumber = pexConfig.Field(
353 dtype=float,
354 doc="Maximum condition number for a well conditioned spatial matrix",
355 default=1.0e10,
356 check=lambda x: x >= 0.0
357 )
358 iterateSingleKernel = pexConfig.Field(
359 dtype=bool,
360 doc="""Remake KernelCandidate using better variance estimate after first pass?
361 Primarily useful when convolving a single-depth image, otherwise not necessary.""",
362 default=False,
363 )
364 constantVarianceWeighting = pexConfig.Field(
365 dtype=bool,
366 doc="""Use constant variance weighting in single kernel fitting?
367 In some cases this is better for bright star residuals.""",
368 default=True,
369 )
370 calculateKernelUncertainty = pexConfig.Field(
371 dtype=bool,
372 doc="""Calculate kernel and background uncertainties for each kernel candidate?
373 This comes from the inverse of the covariance matrix.
374 Warning: regularization can cause problems for this step.""",
375 default=False,
376 )
377 useBicForKernelBasis = pexConfig.Field(
378 dtype=bool,
379 doc="""Use Bayesian Information Criterion to select the number of bases going into the kernel""",
380 default=False,
381 )
382
383
384class PsfMatchConfigAL(PsfMatchConfig):
385 """The parameters specific to the "Alard-Lupton" (sum-of-Gaussian) Psf-matching basis"""
386
387 def setDefaults(self):
388 PsfMatchConfig.setDefaults(self)
389 self.kernelBasisSet = "alard-lupton"
390 self.maxConditionNumber = 5.0e7
391
392 alardNGauss = pexConfig.Field(
393 dtype=int,
394 doc="Number of base Gaussians in alard-lupton kernel basis function generation.",
395 default=3,
396 check=lambda x: x >= 1
397 )
398 alardDegGauss = pexConfig.ListField(
399 dtype=int,
400 doc="Polynomial order of spatial modification of base Gaussians. "
401 "List length must be `alardNGauss`.",
402 default=(4, 2, 2),
403 )
404 alardSigGauss = pexConfig.ListField(
405 dtype=float,
406 doc="Default sigma values in pixels of base Gaussians. "
407 "List length must be `alardNGauss`.",
408 default=(0.7, 1.5, 3.0),
409 )
410 alardGaussBeta = pexConfig.Field(
411 dtype=float,
412 doc="Used if `scaleByFwhm==True`, scaling multiplier of base "
413 "Gaussian sigmas for automated sigma determination",
414 default=2.0,
415 check=lambda x: x >= 0.0,
416 )
417 alardMinSig = pexConfig.Field(
418 dtype=float,
419 doc="Used if `scaleByFwhm==True`, minimum sigma (pixels) for base Gaussians",
420 default=0.7,
421 check=lambda x: x >= 0.25
422 )
423 alardDegGaussDeconv = pexConfig.Field(
424 dtype=int,
425 doc="Used if `scaleByFwhm==True`, degree of spatial modification of ALL base Gaussians "
426 "in AL basis during deconvolution",
427 default=3,
428 check=lambda x: x >= 1
429 )
430 alardMinSigDeconv = pexConfig.Field(
431 dtype=float,
432 doc="Used if `scaleByFwhm==True`, minimum sigma (pixels) for base Gaussians during deconvolution; "
433 "make smaller than `alardMinSig` as this is only indirectly used",
434 default=0.4,
435 check=lambda x: x >= 0.25
436 )
437 alardNGaussDeconv = pexConfig.Field(
438 dtype=int,
439 doc="Used if `scaleByFwhm==True`, number of base Gaussians in AL basis during deconvolution",
440 default=3,
441 check=lambda x: x >= 1
442 )
443
444
445class PsfMatchConfigDF(PsfMatchConfig):
446 """The parameters specific to the delta-function (one basis per-pixel) Psf-matching basis"""
447
448 def setDefaults(self):
449 PsfMatchConfig.setDefaults(self)
450 self.kernelBasisSet = "delta-function"
451 self.maxConditionNumber = 5.0e6
452 self.usePcaForSpatialKernel = True
453 self.subtractMeanForPca = True
454 self.useBicForKernelBasis = False
455
456 useRegularization = pexConfig.Field(
457 dtype=bool,
458 doc="Use regularization to smooth the delta function kernels",
459 default=True,
460 )
461 regularizationType = pexConfig.ChoiceField(
462 dtype=str,
463 doc="Type of regularization.",
464 default="centralDifference",
465 allowed={
466 "centralDifference": "Penalize second derivative using 2-D stencil of central finite difference",
467 "forwardDifference": "Penalize first, second, third derivatives using forward finite differeces"
468 }
469 )
470 centralRegularizationStencil = pexConfig.ChoiceField(
471 dtype=int,
472 doc="Type of stencil to approximate central derivative (for centralDifference only)",
473 default=9,
474 allowed={
475 5: "5-point stencil including only adjacent-in-x,y elements",
476 9: "9-point stencil including diagonal elements"
477 }
478 )
479 forwardRegularizationOrders = pexConfig.ListField(
480 dtype=int,
481 doc="Array showing which order derivatives to penalize (for forwardDifference only)",
482 default=(1, 2),
483 itemCheck=lambda x: (x > 0) and (x < 4)
484 )
485 regularizationBorderPenalty = pexConfig.Field(
486 dtype=float,
487 doc="Value of the penalty for kernel border pixels",
488 default=3.0,
489 check=lambda x: x >= 0.0
490 )
491 lambdaType = pexConfig.ChoiceField(
492 dtype=str,
493 doc="How to choose the value of the regularization strength",
494 default="absolute",
495 allowed={
496 "absolute": "Use lambdaValue as the value of regularization strength",
497 "relative": "Use lambdaValue as fraction of the default regularization strength (N.R. 18.5.8)",
498 "minimizeBiasedRisk": "Minimize biased risk estimate",
499 "minimizeUnbiasedRisk": "Minimize unbiased risk estimate",
500 }
501 )
502 lambdaValue = pexConfig.Field(
503 dtype=float,
504 doc="Value used for absolute determinations of regularization strength",
505 default=0.2,
506 )
507 lambdaScaling = pexConfig.Field(
508 dtype=float,
509 doc="Fraction of the default lambda strength (N.R. 18.5.8) to use. 1e-4 or 1e-5",
510 default=1e-4,
511 )
512 lambdaStepType = pexConfig.ChoiceField(
513 dtype=str,
514 doc="""If a scan through lambda is needed (minimizeBiasedRisk, minimizeUnbiasedRisk),
515 use log or linear steps""",
516 default="log",
517 allowed={
518 "log": "Step in log intervals; e.g. lambdaMin, lambdaMax, lambdaStep = -1.0, 2.0, 0.1",
519 "linear": "Step in linear intervals; e.g. lambdaMin, lambdaMax, lambdaStep = 0.1, 100, 0.1",
520 }
521 )
522 lambdaMin = pexConfig.Field(
523 dtype=float,
524 doc="""If scan through lambda needed (minimizeBiasedRisk, minimizeUnbiasedRisk),
525 start at this value. If lambdaStepType = log:linear, suggest -1:0.1""",
526 default=-1.0,
527 )
528 lambdaMax = pexConfig.Field(
529 dtype=float,
530 doc="""If scan through lambda needed (minimizeBiasedRisk, minimizeUnbiasedRisk),
531 stop at this value. If lambdaStepType = log:linear, suggest 2:100""",
532 default=2.0,
533 )
534 lambdaStep = pexConfig.Field(
535 dtype=float,
536 doc="""If scan through lambda needed (minimizeBiasedRisk, minimizeUnbiasedRisk),
537 step in these increments. If lambdaStepType = log:linear, suggest 0.1:0.1""",
538 default=0.1,
539 )
540
541
542class PsfMatchTask(pipeBase.Task, abc.ABC):
543 """Base class for Psf Matching; should not be called directly
544
545 Notes
546 -----
547 PsfMatchTask is a base class that implements the core functionality for matching the
548 Psfs of two images using a spatially varying Psf-matching `lsst.afw.math.LinearCombinationKernel`.
549 The Task requires the user to provide an instance of an `lsst.afw.math.SpatialCellSet`,
550 filled with `lsst.ip.diffim.KernelCandidate` instances, and a list of `lsst.afw.math.Kernels`
551 of basis shapes that will be used for the decomposition. If requested, the Task
552 also performs background matching and returns the differential background model as an
553 `lsst.afw.math.Kernel.SpatialFunction`.
554
555 **Invoking the Task**
556
557 As a base class, this Task is not directly invoked. However, ``run()`` methods that are
558 implemented on derived classes will make use of the core ``_solve()`` functionality,
559 which defines a sequence of `lsst.afw.math.CandidateVisitor` classes that iterate
560 through the KernelCandidates, first building up a per-candidate solution and then
561 building up a spatial model from the ensemble of candidates. Sigma clipping is
562 performed using the mean and standard deviation of all kernel sums (to reject
563 variable objects), on the per-candidate substamp diffim residuals
564 (to indicate a bad choice of kernel basis shapes for that particular object),
565 and on the substamp diffim residuals using the spatial kernel fit (to indicate a bad
566 choice of spatial kernel order, or poor constraints on the spatial model). The
567 ``_diagnostic()`` method logs information on the quality of the spatial fit, and also
568 modifies the Task metadata.
569
570 .. list-table:: Quantities set in Metadata
571 :header-rows: 1
572
573 * - Parameter
574 - Description
575 * - ``spatialConditionNum``
576 - Condition number of the spatial kernel fit
577 * - ``spatialKernelSum``
578 - Kernel sum (10^{-0.4 * ``Delta``; zeropoint}) of the spatial Psf-matching kernel
579 * - ``ALBasisNGauss``
580 - If using sum-of-Gaussian basis, the number of gaussians used
581 * - ``ALBasisDegGauss``
582 - If using sum-of-Gaussian basis, the deg of spatial variation of the Gaussians
583 * - ``ALBasisSigGauss``
584 - If using sum-of-Gaussian basis, the widths (sigma) of the Gaussians
585 * - ``ALKernelSize``
586 - If using sum-of-Gaussian basis, the kernel size
587 * - ``NFalsePositivesTotal``
588 - Total number of diaSources
589 * - ``NFalsePositivesRefAssociated``
590 - Number of diaSources that associate with the reference catalog
591 * - ``NFalsePositivesRefAssociated``
592 - Number of diaSources that associate with the source catalog
593 * - ``NFalsePositivesUnassociated``
594 - Number of diaSources that are orphans
595 * - ``metric_MEAN``
596 - Mean value of substamp diffim quality metrics across all KernelCandidates,
597 for both the per-candidate (LOCAL) and SPATIAL residuals
598 * - ``metric_MEDIAN``
599 - Median value of substamp diffim quality metrics across all KernelCandidates,
600 for both the per-candidate (LOCAL) and SPATIAL residuals
601 * - ``metric_STDEV``
602 - Standard deviation of substamp diffim quality metrics across all KernelCandidates,
603 for both the per-candidate (LOCAL) and SPATIAL residuals
604
605 **Debug variables**
606
607 The ``pipetask`` command line interface supports a
608 flag --debug to import @b debug.py from your PYTHONPATH. The relevant contents of debug.py
609 for this Task include:
610
611 .. code-block:: py
612
613 import sys
614 import lsstDebug
615 def DebugInfo(name):
616 di = lsstDebug.getInfo(name)
617 if name == "lsst.ip.diffim.psfMatch":
618 # enable debug output
619 di.display = True
620 # display mask transparency
621 di.maskTransparency = 80
622 # show all the candidates and residuals
623 di.displayCandidates = True
624 # show kernel basis functions
625 di.displayKernelBasis = False
626 # show kernel realized across the image
627 di.displayKernelMosaic = True
628 # show coefficients of spatial model
629 di.plotKernelSpatialModel = False
630 # show fixed and spatial coefficients and coefficient histograms
631 di.plotKernelCoefficients = True
632 # show the bad candidates (red) along with good (green)
633 di.showBadCandidates = True
634 return di
635 lsstDebug.Info = DebugInfo
636 lsstDebug.frame = 1
637
638 Note that if you want additional logging info, you may add to your scripts:
639
640 .. code-block:: py
641
642 import lsst.utils.logging as logUtils
643 logUtils.trace_set_at("lsst.ip.diffim", 4)
644 """
645 ConfigClass = PsfMatchConfig
646 _DefaultName = "psfMatch"
647
648 def __init__(self, *args, **kwargs):
649 """Create the psf-matching Task
650
651 Parameters
652 ----------
653 *args
654 Arguments to be passed to ``lsst.pipe.base.task.Task.__init__``
655 **kwargs
656 Keyword arguments to be passed to ``lsst.pipe.base.task.Task.__init__``
657
658 Notes
659 -----
660 The initialization sets the Psf-matching kernel configuration using the value of
661 self.config.kernel.active. If the kernel is requested with regularization to moderate
662 the bias/variance tradeoff, currently only used when a delta function kernel basis
663 is provided, it creates a regularization matrix stored as member variable
664 self.hMat.
665 """
666 pipeBase.Task.__init__(self, *args, **kwargs)
667 self.kConfig = self.config.kernel.active
668
669 if 'useRegularization' in self.kConfig:
670 self.useRegularization = self.kConfig.useRegularization
671 else:
672 self.useRegularization = False
673
674 if self.useRegularization:
675 self.hMat = diffimLib.makeRegularizationMatrix(pexConfig.makePropertySet(self.kConfig))
676
677 def _diagnostic(self, kernelCellSet, spatialSolution, spatialKernel, spatialBg):
678 """Provide logging diagnostics on quality of spatial kernel fit
679
680 Parameters
681 ----------
682 kernelCellSet : `lsst.afw.math.SpatialCellSet`
683 Cellset that contains the KernelCandidates used in the fitting
684 spatialSolution : `lsst.ip.diffim.SpatialKernelSolution`
685 KernelSolution of best-fit
686 spatialKernel : `lsst.afw.math.LinearCombinationKernel`
687 Best-fit spatial Kernel model
688 spatialBg : `lsst.afw.math.Function2D`
689 Best-fit spatial background model
690 """
691 # What is the final kernel sum
692 kImage = afwImage.ImageD(spatialKernel.getDimensions())
693 kSum = spatialKernel.computeImage(kImage, False)
694 self.log.info("Final spatial kernel sum %.3f", kSum)
695
696 # Look at how well conditioned the matrix is
697 conditionNum = spatialSolution.getConditionNumber(
698 getattr(diffimLib.KernelSolution, self.kConfig.conditionNumberType))
699 self.log.info("Spatial model condition number %.3e", conditionNum)
700
701 if conditionNum < 0.0:
702 self.log.warning("Condition number is negative (%.3e)", conditionNum)
703 if conditionNum > self.kConfig.maxSpatialConditionNumber:
704 self.log.warning("Spatial solution exceeds max condition number (%.3e > %.3e)",
705 conditionNum, self.kConfig.maxSpatialConditionNumber)
706
707 self.metadata["spatialConditionNum"] = conditionNum
708 self.metadata["spatialKernelSum"] = kSum
709
710 # Look at how well the solution is constrained
711 nBasisKernels = spatialKernel.getNBasisKernels()
712 nKernelTerms = spatialKernel.getNSpatialParameters()
713 if nKernelTerms == 0: # order 0
714 nKernelTerms = 1
715
716 # Not fit for
717 nBgTerms = spatialBg.getNParameters()
718 if nBgTerms == 1:
719 if spatialBg.getParameters()[0] == 0.0:
720 nBgTerms = 0
721
722 nGood = 0
723 nBad = 0
724 nTot = 0
725 for cell in kernelCellSet.getCellList():
726 for cand in cell.begin(False): # False = include bad candidates
727 nTot += 1
728 if cand.getStatus() == afwMath.SpatialCellCandidate.GOOD:
729 nGood += 1
730 if cand.getStatus() == afwMath.SpatialCellCandidate.BAD:
731 nBad += 1
732
733 self.log.info("Doing stats of kernel candidates used in the spatial fit.")
734
735 # Counting statistics
736 if nBad > 2*nGood:
737 self.log.warning("Many more candidates rejected than accepted; %d total, %d rejected, %d used",
738 nTot, nBad, nGood)
739 else:
740 self.log.info("%d candidates total, %d rejected, %d used", nTot, nBad, nGood)
741
742 # Some judgements on the quality of the spatial models
743 if nGood < nKernelTerms:
744 self.log.warning("Spatial kernel model underconstrained; %d candidates, %d terms, %d bases",
745 nGood, nKernelTerms, nBasisKernels)
746 self.log.warning("Consider lowering the spatial order")
747 elif nGood <= 2*nKernelTerms:
748 self.log.warning("Spatial kernel model poorly constrained; %d candidates, %d terms, %d bases",
749 nGood, nKernelTerms, nBasisKernels)
750 self.log.warning("Consider lowering the spatial order")
751 else:
752 self.log.info("Spatial kernel model well constrained; %d candidates, %d terms, %d bases",
753 nGood, nKernelTerms, nBasisKernels)
754
755 if nGood < nBgTerms:
756 self.log.warning("Spatial background model underconstrained; %d candidates, %d terms",
757 nGood, nBgTerms)
758 self.log.warning("Consider lowering the spatial order")
759 elif nGood <= 2*nBgTerms:
760 self.log.warning("Spatial background model poorly constrained; %d candidates, %d terms",
761 nGood, nBgTerms)
762 self.log.warning("Consider lowering the spatial order")
763 else:
764 self.log.info("Spatial background model appears well constrained; %d candidates, %d terms",
765 nGood, nBgTerms)
766
767 def _displayDebug(self, kernelCellSet, spatialKernel, spatialBackground):
768 """Provide visualization of the inputs and ouputs to the Psf-matching code
769
770 Parameters
771 ----------
772 kernelCellSet : `lsst.afw.math.SpatialCellSet`
773 The SpatialCellSet used in determining the matching kernel and background
774 spatialKernel : `lsst.afw.math.LinearCombinationKernel`
775 Spatially varying Psf-matching kernel
776 spatialBackground : `lsst.afw.math.Function2D`
777 Spatially varying background-matching function
778 """
779 import lsstDebug
780 displayCandidates = lsstDebug.Info(__name__).displayCandidates
781 displayKernelBasis = lsstDebug.Info(__name__).displayKernelBasis
782 displayKernelMosaic = lsstDebug.Info(__name__).displayKernelMosaic
783 plotKernelSpatialModel = lsstDebug.Info(__name__).plotKernelSpatialModel
784 plotKernelCoefficients = lsstDebug.Info(__name__).plotKernelCoefficients
785 showBadCandidates = lsstDebug.Info(__name__).showBadCandidates
786 maskTransparency = lsstDebug.Info(__name__).maskTransparency
787 if not maskTransparency:
788 maskTransparency = 0
789 afwDisplay.setDefaultMaskTransparency(maskTransparency)
790
791 if displayCandidates:
792 diutils.showKernelCandidates(kernelCellSet, kernel=spatialKernel, background=spatialBackground,
793 frame=lsstDebug.frame,
794 showBadCandidates=showBadCandidates)
795 lsstDebug.frame += 1
796 diutils.showKernelCandidates(kernelCellSet, kernel=spatialKernel, background=spatialBackground,
797 frame=lsstDebug.frame,
798 showBadCandidates=showBadCandidates,
799 kernels=True)
800 lsstDebug.frame += 1
801 diutils.showKernelCandidates(kernelCellSet, kernel=spatialKernel, background=spatialBackground,
802 frame=lsstDebug.frame,
803 showBadCandidates=showBadCandidates,
804 resids=True)
805 lsstDebug.frame += 1
806
807 if displayKernelBasis:
808 diutils.showKernelBasis(spatialKernel, frame=lsstDebug.frame)
809 lsstDebug.frame += 1
810
811 if displayKernelMosaic:
812 diutils.showKernelMosaic(kernelCellSet.getBBox(), spatialKernel, frame=lsstDebug.frame)
813 lsstDebug.frame += 1
814
815 if plotKernelSpatialModel:
816 diutils.plotKernelSpatialModel(spatialKernel, kernelCellSet, showBadCandidates=showBadCandidates)
817
818 if plotKernelCoefficients:
819 diutils.plotKernelCoefficients(spatialKernel, kernelCellSet)
820
821 def _createPcaBasis(self, kernelCellSet, nStarPerCell, ps):
822 """Create Principal Component basis
823
824 If a principal component analysis is requested, typically when using a delta function basis,
825 perform the PCA here and return a new basis list containing the new principal components.
826
827 Parameters
828 ----------
829 kernelCellSet : `lsst.afw.math.SpatialCellSet`
830 a SpatialCellSet containing KernelCandidates, from which components are derived
831 nStarPerCell : `int`
832 the number of stars per cell to visit when doing the PCA
833 ps : `lsst.daf.base.PropertySet`
834 input property set controlling the single kernel visitor
835
836 Returns
837 -------
838 nRejectedPca : `int`
839 number of KernelCandidates rejected during PCA loop
840 spatialBasisList : `list` of `lsst.afw.math.kernel.FixedKernel`
841 basis list containing the principal shapes as Kernels
842
843 Raises
844 ------
845 RuntimeError
846 If the Eigenvalues sum to zero.
847 """
848 nComponents = self.kConfig.numPrincipalComponents
849 imagePca = diffimLib.KernelPcaD()
850 importStarVisitor = diffimLib.KernelPcaVisitorF(imagePca)
851 kernelCellSet.visitCandidates(importStarVisitor, nStarPerCell)
852 if self.kConfig.subtractMeanForPca:
853 importStarVisitor.subtractMean()
854 imagePca.analyze()
855
856 eigenValues = imagePca.getEigenValues()
857 pcaBasisList = importStarVisitor.getEigenKernels()
858
859 eSum = np.sum(eigenValues)
860 if eSum == 0.0:
861 raise RuntimeError("Eigenvalues sum to zero")
862 trace_logger = getTraceLogger(self.log.getChild("_solve"), 5)
863 for j in range(len(eigenValues)):
864 trace_logger.debug("Eigenvalue %d : %f (%f)", j, eigenValues[j], eigenValues[j]/eSum)
865
866 nToUse = min(nComponents, len(eigenValues))
867 trimBasisList = []
868 for j in range(nToUse):
869 # Check for NaNs?
870 kimage = afwImage.ImageD(pcaBasisList[j].getDimensions())
871 pcaBasisList[j].computeImage(kimage, False)
872 if not (True in np.isnan(kimage.array)):
873 trimBasisList.append(pcaBasisList[j])
874
875 # Put all the power in the first kernel, which will not vary spatially
876 spatialBasisList = diffimLib.renormalizeKernelList(trimBasisList)
877
878 # New Kernel visitor for this new basis list (no regularization explicitly)
879 singlekvPca = diffimLib.BuildSingleKernelVisitorF(spatialBasisList, ps)
880 singlekvPca.setSkipBuilt(False)
881 kernelCellSet.visitCandidates(singlekvPca, nStarPerCell)
882 singlekvPca.setSkipBuilt(True)
883 nRejectedPca = singlekvPca.getNRejected()
884
885 return nRejectedPca, spatialBasisList
886
887 @abc.abstractmethod
888 def _buildCellSet(self, *args):
889 """Fill a SpatialCellSet with KernelCandidates for the Psf-matching process;
890 override in derived classes"""
891 return
892
893 @timeMethod
894 def _solve(self, kernelCellSet, basisList, returnOnExcept=False):
895 """Solve for the PSF matching kernel
896
897 Parameters
898 ----------
899 kernelCellSet : `lsst.afw.math.SpatialCellSet`
900 a SpatialCellSet to use in determining the matching kernel
901 (typically as provided by _buildCellSet)
902 basisList : `list` of `lsst.afw.math.kernel.FixedKernel`
903 list of Kernels to be used in the decomposition of the spatially varying kernel
904 (typically as provided by makeKernelBasisList)
905 returnOnExcept : `bool`, optional
906 if True then return (None, None) if an error occurs, else raise the exception
907
908 Returns
909 -------
910 psfMatchingKernel : `lsst.afw.math.LinearCombinationKernel`
911 Spatially varying Psf-matching kernel
912 backgroundModel : `lsst.afw.math.Function2D`
913 Spatially varying background-matching function
914
915 Raises
916 ------
917 RuntimeError :
918 If unable to determine PSF matching kernel and ``returnOnExcept==False``.
919 """
920
921 import lsstDebug
922 display = lsstDebug.Info(__name__).display
923
924 maxSpatialIterations = self.kConfig.maxSpatialIterations
925 nStarPerCell = self.kConfig.nStarPerCell
926 usePcaForSpatialKernel = self.kConfig.usePcaForSpatialKernel
927
928 # Visitor for the single kernel fit
929 ps = pexConfig.makePropertySet(self.kConfig)
930 if self.useRegularization:
931 singlekv = diffimLib.BuildSingleKernelVisitorF(basisList, ps, self.hMat)
932 else:
933 singlekv = diffimLib.BuildSingleKernelVisitorF(basisList, ps)
934
935 # Visitor for the kernel sum rejection
936 ksv = diffimLib.KernelSumVisitorF(ps)
937
938 # Main loop
939 trace_loggers = [getTraceLogger(self.log.getChild("_solve"), i) for i in range(5)]
940 t0 = time.time()
941 totalIterations = 0
942 thisIteration = 0
943 while (thisIteration < maxSpatialIterations):
944
945 # Make sure there are no uninitialized candidates as active occupants of Cell
946 nRejectedSkf = -1
947 while (nRejectedSkf != 0):
948 trace_loggers[1].debug("Building single kernels...")
949 kernelCellSet.visitCandidates(singlekv, nStarPerCell, ignoreExceptions=True)
950 nRejectedSkf = singlekv.getNRejected()
951 trace_loggers[1].debug(
952 "Iteration %d, rejected %d candidates due to initial kernel fit",
953 thisIteration, nRejectedSkf
954 )
955
956 # Reject outliers in kernel sum
957 ksv.resetKernelSum()
958 ksv.setMode(diffimLib.KernelSumVisitorF.AGGREGATE)
959 kernelCellSet.visitCandidates(ksv, nStarPerCell, ignoreExceptions=True)
960 ksv.processKsumDistribution()
961 ksv.setMode(diffimLib.KernelSumVisitorF.REJECT)
962 kernelCellSet.visitCandidates(ksv, nStarPerCell, ignoreExceptions=True)
963
964 nRejectedKsum = ksv.getNRejected()
965 trace_loggers[1].debug(
966 "Iteration %d, rejected %d candidates due to kernel sum",
967 thisIteration, nRejectedKsum
968 )
969
970 # Do we jump back to the top without incrementing thisIteration?
971 if nRejectedKsum > 0:
972 totalIterations += 1
973 continue
974
975 # At this stage we can either apply the spatial fit to
976 # the kernels, or we run a PCA, use these as a *new*
977 # basis set with lower dimensionality, and then apply
978 # the spatial fit to these kernels
979
980 if (usePcaForSpatialKernel):
981 trace_loggers[0].debug("Building Pca basis")
982
983 nRejectedPca, spatialBasisList = self._createPcaBasis(kernelCellSet, nStarPerCell, ps)
984 trace_loggers[1].debug(
985 "Iteration %d, rejected %d candidates due to Pca kernel fit",
986 thisIteration, nRejectedPca
987 )
988
989 # We don't want to continue on (yet) with the
990 # spatial modeling, because we have bad objects
991 # contributing to the Pca basis. We basically
992 # need to restart from the beginning of this loop,
993 # since the cell-mates of those objects that were
994 # rejected need their original Kernels built by
995 # singleKernelFitter.
996
997 # Don't count against thisIteration
998 if (nRejectedPca > 0):
999 totalIterations += 1
1000 continue
1001 else:
1002 spatialBasisList = basisList
1003
1004 # We have gotten on to the spatial modeling part
1005 regionBBox = kernelCellSet.getBBox()
1006 spatialkv = diffimLib.BuildSpatialKernelVisitorF(spatialBasisList, regionBBox, ps)
1007 kernelCellSet.visitCandidates(spatialkv, nStarPerCell)
1008 spatialkv.solveLinearEquation()
1009 trace_loggers[2].debug("Spatial kernel built with %d candidates", spatialkv.getNCandidates())
1010 spatialKernel, spatialBackground = spatialkv.getSolutionPair()
1011
1012 # Check the quality of the spatial fit (look at residuals)
1013 assesskv = diffimLib.AssessSpatialKernelVisitorF(spatialKernel, spatialBackground, ps)
1014 kernelCellSet.visitCandidates(assesskv, nStarPerCell)
1015 nRejectedSpatial = assesskv.getNRejected()
1016 nGoodSpatial = assesskv.getNGood()
1017 trace_loggers[1].debug(
1018 "Iteration %d, rejected %d candidates due to spatial kernel fit",
1019 thisIteration, nRejectedSpatial
1020 )
1021 trace_loggers[1].debug("%d candidates used in fit", nGoodSpatial)
1022
1023 # If only nGoodSpatial == 0, might be other candidates in the cells
1024 if nGoodSpatial == 0 and nRejectedSpatial == 0:
1025 raise RuntimeError("No kernel candidates for spatial fit")
1026
1027 if nRejectedSpatial == 0:
1028 # Nothing rejected, finished with spatial fit
1029 break
1030
1031 # Otherwise, iterate on...
1032 thisIteration += 1
1033
1034 # Final fit if above did not converge
1035 if (nRejectedSpatial > 0) and (thisIteration == maxSpatialIterations):
1036 trace_loggers[1].debug("Final spatial fit")
1037 if (usePcaForSpatialKernel):
1038 nRejectedPca, spatialBasisList = self._createPcaBasis(kernelCellSet, nStarPerCell, ps)
1039 regionBBox = kernelCellSet.getBBox()
1040 spatialkv = diffimLib.BuildSpatialKernelVisitorF(spatialBasisList, regionBBox, ps)
1041 kernelCellSet.visitCandidates(spatialkv, nStarPerCell)
1042 spatialkv.solveLinearEquation()
1043 trace_loggers[2].debug("Spatial kernel built with %d candidates", spatialkv.getNCandidates())
1044 spatialKernel, spatialBackground = spatialkv.getSolutionPair()
1045
1046 spatialSolution = spatialkv.getKernelSolution()
1047
1048 t1 = time.time()
1049 trace_loggers[0].debug("Total time to compute the spatial kernel : %.2f s", (t1 - t0))
1050
1051 if display:
1052 self._displayDebug(kernelCellSet, spatialKernel, spatialBackground)
1053
1054 self._diagnostic(kernelCellSet, spatialSolution, spatialKernel, spatialBackground)
1055
1056 return spatialSolution, spatialKernel, spatialBackground
1057
1058
1059PsfMatch = PsfMatchTask