LSST Applications g042eb84c57+cc888f63ad,g04e9c324dd+8c5ae1fdc5,g075cd4982b+9b1c83bcd6,g134cb467dc+2c53628a85,g199a45376c+0ba108daf9,g1c7ccd22ea+7e3dca4df7,g1fd858c14a+dca65ba218,g210f2d0738+9b1c83bcd6,g262e1987ae+e44eb51e79,g29ae962dfc+6f640dd5a9,g2b1d02342f+0d6da9ca1b,g2cef7863aa+aef1011c0b,g35bb328faa+8c5ae1fdc5,g3fd5ace14f+cf2fe2a4f0,g47891489e3+0d594cb711,g485a6dd78d+96184e616d,g53246c7159+8c5ae1fdc5,g56a1a4eaf3+fd7ad03fde,g64539dfbff+9b1c83bcd6,g67b6fd64d1+0d594cb711,g67fd3c3899+9b1c83bcd6,g6985122a63+0d594cb711,g74acd417e5+84684b4df0,g786e29fd12+668abc6043,g81db2e9a8d+98e2ab9f28,g87389fa792+8856018cbb,g89139ef638+0d594cb711,g8d7436a09f+e899c19ad2,g8ea07a8fe4+760ca7c3fc,g90f42f885a+033b1d468d,g97be763408+08172bb0fa,ga41d0fce20+8cfac57a92,gbf99507273+8c5ae1fdc5,gd7ef33dd92+0d594cb711,gdab6d2f7ff+84684b4df0,ge410e46f29+0d594cb711,geaed405ab2+c4bbc419c6,gf9a733ac38+8c5ae1fdc5,w.2025.39
LSST Data Management Base Package
|
Go to the source code of this file.
Classes | |
class | lsst.scarlet.lite.display.LinearPercentileNorm |
class | lsst.scarlet.lite.display.AsinhPercentileNorm |
Namespaces | |
namespace | lsst |
namespace | lsst.scarlet |
namespace | lsst.scarlet.lite |
namespace | lsst.scarlet.lite.display |
Functions | |
np.ndarray | lsst.scarlet.lite.display.channels_to_rgb (int channels) |
np.ndarray | lsst.scarlet.lite.display.img_to_3channel (np.ndarray img, np.ndarray|None channel_map=None, float fill_value=0) |
np.ndarray | lsst.scarlet.lite.display.img_to_rgb (np.ndarray|Image img, np.ndarray|None channel_map=None, float fill_value=0, Mapping|None norm=None, np.ndarray|None mask=None) |
matplotlib.pyplot.Figure | lsst.scarlet.lite.display.show_likelihood (Blend blend, tuple[float, float]|None figsize=None, **kwargs) |
lsst.scarlet.lite.display._add_markers (Source src, tuple[float, float, float, float] extent, matplotlib.pyplot.Axes ax, bool add_markers, bool add_boxes, dict marker_kwargs, dict box_kwargs) | |
lsst.scarlet.lite.display.show_observation (Observation observation, Mapping|None norm=None, np.ndarray|None channel_map=None, Sequence|None centers=None, str|None psf_scaling=None, tuple[float, float]|None figsize=None) | |
matplotlib.pyplot.Figure | lsst.scarlet.lite.display.show_scene (Blend blend, Mapping|None norm=None, np.ndarray|None channel_map=None, bool show_model=True, bool show_observed=False, bool show_rendered=False, bool show_residual=False, bool add_labels=True, bool add_boxes=False, tuple[float, float]|None figsize=None, bool linear=True, bool use_flux=False, dict|None box_kwargs=None) |
tuple[int, int, int, int] | lsst.scarlet.lite.display.get_extent (Box bbox) |
matplotlib.pyplot.Figure | lsst.scarlet.lite.display.show_sources (Blend blend, list[Source]|None sources=None, Mapping|None norm=None, np.ndarray|None channel_map=None, bool show_model=True, bool show_observed=False, bool show_rendered=False, bool show_spectrum=True, tuple[float, float]|None figsize=None, bool model_mask=True, bool add_markers=True, bool add_boxes=False, bool use_flux=False) |
matplotlib.pyplot.Figure | lsst.scarlet.lite.display.compare_spectra (bool use_flux=True, bool use_template=True, **list[Source] all_sources) |
Variables | |
float | lsst.scarlet.lite.display.panel_size = 4.0 |