LSST Applications 24.1.6,g063fba187b+56b85ce14a,g0f08755f38+df8a265115,g12f32b3c4e+891a09f10d,g1524ad2192+7a5d7b3fbd,g1653933729+a8ce1bb630,g168dd56ebc+a8ce1bb630,g28da252d5a+07cb1400be,g2bbee38e9b+ae03bbfc84,g2bc492864f+ae03bbfc84,g3156d2b45e+6e55a43351,g347aa1857d+ae03bbfc84,g35bb328faa+a8ce1bb630,g3a166c0a6a+ae03bbfc84,g3e281a1b8c+c5dd892a6c,g414038480c+6b9177ef31,g41af890bb2+8f257c4c0b,g781aacb6e4+a8ce1bb630,g7af13505b9+7137b3b17d,g80478fca09+6df6903293,g82479be7b0+091ce1d07f,g858d7b2824+df8a265115,g89c8672015+f4add4ffd5,g9125e01d80+a8ce1bb630,g9726552aa6+414189b318,ga5288a1d22+4a2bca08d7,gacef1a1666+c9a8ff65f4,gb58c049af0+d64f4d3760,gbcfae0f0a0+de1d42d831,gc28159a63d+ae03bbfc84,gcf0d15dbbd+72117bf34e,gda6a2b7d83+72117bf34e,gdaeeff99f8+1711a396fd,ge500cccec5+c8c9c9af63,ge79ae78c31+ae03bbfc84,gf0baf85859+c1f95f4921,gfa517265be+df8a265115,gfa999e8aa5+17cd334064,gfb92a5be7c+df8a265115
LSST Data Management Base Package
Loading...
Searching...
No Matches
Classes | Namespaces | Functions | Variables
display.py File Reference

Go to the source code of this file.

Classes

class  lsst.scarlet.lite.display.LinearPercentileNorm
 
class  lsst.scarlet.lite.display.AsinhPercentileNorm
 

Namespaces

namespace  lsst
 
namespace  lsst.scarlet
 
namespace  lsst.scarlet.lite
 
namespace  lsst.scarlet.lite.display
 

Functions

np.ndarray lsst.scarlet.lite.display.channels_to_rgb (int channels)
 
np.ndarray lsst.scarlet.lite.display.img_to_3channel (np.ndarray img, np.ndarray|None channel_map=None, float fill_value=0)
 
np.ndarray lsst.scarlet.lite.display.img_to_rgb (np.ndarray|Image img, np.ndarray|None channel_map=None, float fill_value=0, Mapping|None norm=None, np.ndarray|None mask=None)
 
matplotlib.pyplot.Figure lsst.scarlet.lite.display.show_likelihood (Blend blend, tuple[float, float]|None figsize=None, **kwargs)
 
 lsst.scarlet.lite.display._add_markers (Source src, tuple[float, float, float, float] extent, matplotlib.pyplot.Axes ax, bool add_markers, bool add_boxes, dict marker_kwargs, dict box_kwargs)
 
 lsst.scarlet.lite.display.show_observation (Observation observation, Mapping|None norm=None, np.ndarray|None channel_map=None, Sequence|None centers=None, str|None psf_scaling=None, tuple[float, float]|None figsize=None)
 
matplotlib.pyplot.Figure lsst.scarlet.lite.display.show_scene (Blend blend, Mapping|None norm=None, np.ndarray|None channel_map=None, bool show_model=True, bool show_observed=False, bool show_rendered=False, bool show_residual=False, bool add_labels=True, bool add_boxes=False, tuple[float, float]|None figsize=None, bool linear=True, bool use_flux=False, dict|None box_kwargs=None)
 
tuple[int, int, int, int] lsst.scarlet.lite.display.get_extent (Box bbox)
 
matplotlib.pyplot.Figure lsst.scarlet.lite.display.show_sources (Blend blend, list[Source]|None sources=None, Mapping|None norm=None, np.ndarray|None channel_map=None, bool show_model=True, bool show_observed=False, bool show_rendered=False, bool show_spectrum=True, tuple[float, float]|None figsize=None, bool model_mask=True, bool add_markers=True, bool add_boxes=False, bool use_flux=False)
 
matplotlib.pyplot.Figure lsst.scarlet.lite.display.compare_spectra (bool use_flux=True, bool use_template=True, **list[Source] all_sources)
 

Variables

float lsst.scarlet.lite.display.panel_size = 4.0