LSST Applications g063fba187b+cac8b7c890,g0f08755f38+6aee506743,g1653933729+a8ce1bb630,g168dd56ebc+a8ce1bb630,g1a2382251a+b4475c5878,g1dcb35cd9c+8f9bc1652e,g20f6ffc8e0+6aee506743,g217e2c1bcf+73dee94bd0,g28da252d5a+1f19c529b9,g2bbee38e9b+3f2625acfc,g2bc492864f+3f2625acfc,g3156d2b45e+6e55a43351,g32e5bea42b+1bb94961c2,g347aa1857d+3f2625acfc,g35bb328faa+a8ce1bb630,g3a166c0a6a+3f2625acfc,g3e281a1b8c+c5dd892a6c,g3e8969e208+a8ce1bb630,g414038480c+5927e1bc1e,g41af890bb2+8a9e676b2a,g7af13505b9+809c143d88,g80478fca09+6ef8b1810f,g82479be7b0+f568feb641,g858d7b2824+6aee506743,g89c8672015+f4add4ffd5,g9125e01d80+a8ce1bb630,ga5288a1d22+2903d499ea,gb58c049af0+d64f4d3760,gc28159a63d+3f2625acfc,gcab2d0539d+b12535109e,gcf0d15dbbd+46a3f46ba9,gda6a2b7d83+46a3f46ba9,gdaeeff99f8+1711a396fd,ge79ae78c31+3f2625acfc,gef2f8181fd+0a71e47438,gf0baf85859+c1f95f4921,gfa517265be+6aee506743,gfa999e8aa5+17cd334064,w.2024.51
LSST Data Management Base Package
Loading...
Searching...
No Matches
simpleAssociation.py
Go to the documentation of this file.
1# This file is part of pipe_tasks.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
21
22"""Simple association algorithm for DRP.
23Adapted from http://github.com/LSSTDESC/dia_pipe
24"""
25__all__ = ["SimpleAssociationConfig", "SimpleAssociationTask"]
26
27import numpy as np
28import pandas as pd
29
30import lsst.afw.table as afwTable
31import lsst.geom as geom
32import lsst.pex.config as pexConfig
33import lsst.pipe.base as pipeBase
34from lsst.meas.base import IdGenerator
35
36from .associationUtils import query_disc, eq2xyz, toIndex
37
38
39class SimpleAssociationConfig(pexConfig.Config):
40 """Configuration parameters for the SimpleAssociationTask
41 """
42 tolerance = pexConfig.Field(
43 dtype=float,
44 doc='maximum distance to match sources together in arcsec',
45 default=0.5
46 )
47 nside = pexConfig.Field(
48 dtype=int,
49 doc='Healpix nside value used for indexing',
50 default=2**18,
51 )
52
53
54class SimpleAssociationTask(pipeBase.Task):
55 """Construct DiaObjects from a DataFrame of DIASources by spatially
56 associating the sources.
57
58 Represents a simple, brute force algorithm, 2-way matching of DiaSources
59 into. DiaObjects. Algorithm picks the nearest, first match within the
60 matching radius of a DiaObject to associate a source to for simplicity.
61 """
62 ConfigClass = SimpleAssociationConfig
63 _DefaultName = "simpleAssociation"
64
65 def run(self, diaSources, idGenerator=None):
66 """Associate DiaSources into a collection of DiaObjects using a
67 brute force matching algorithm.
68
69 Reproducible for the same input data is assured by ordering the
70 DiaSource data by visit,detector.
71
72 Parameters
73 ----------
74 diaSources : `pandas.DataFrame`
75 DiaSources in clusters of visit, detector to spatially associate
76 into DiaObjects.
77 idGenerator : `lsst.meas.base.IdGenerator`, optional
78 Object that generates Object IDs and random number generator seeds.
79
80 Returns
81 -------
82 results : `lsst.pipe.base.Struct`
83 Results struct with attributes:
84
85 ``assocDiaSources``
86 Table of DiaSources with updated values for the DiaObjects
87 they are spatially associated to (`pandas.DataFrame`).
88 ``diaObjects``
89 Table of DiaObjects from matching DiaSources
90 (`pandas.DataFrame`).
91 """
92 # Expected indexes include diaSourceId or meaningless range index
93 # If meaningless range index, drop it, else keep it.
94 doDropIndex = diaSources.index.names[0] is None
95 diaSources.reset_index(inplace=True, drop=doDropIndex)
96
97 # Sort by visit, detector, and diaSourceId to get a reproducible
98 # ordering for the association. Use a temporary combined visit,detector
99 # to simplify multi-index operations below; we delete it at the end.
100 diaSources[("visit,detector")] = list(zip(diaSources["visit"], diaSources["detector"]))
101 diaSources.set_index([("visit,detector"), "diaSourceId"], inplace=True)
102
103 # Empty lists to store matching and location data.
104 diaObjectCat = []
105 diaObjectCoords = []
106 healPixIndices = []
107
108 # Create Id factory and catalog for creating DiaObjectIds.
109 if idGenerator is None:
110 idGenerator = IdGenerator()
111 idCat = idGenerator.make_source_catalog(afwTable.SourceTable.makeMinimalSchema())
112
113 for visit, detector in diaSources.index.levels[0]:
114 # For the first visit,detector, just copy the DiaSource info into the
115 # diaObject data to create the first set of Objects.
116 orderedSources = diaSources.loc[(visit, detector)]
117 if len(diaObjectCat) == 0:
118 for diaSourceId, diaSrc in orderedSources.iterrows():
119 self.addNewDiaObject(diaSrc,
120 diaSources,
121 visit,
122 detector,
123 diaSourceId,
124 diaObjectCat,
125 idCat,
126 diaObjectCoords,
127 healPixIndices)
128 continue
129 # Temp list to store DiaObjects already used for this visit, detector.
130 usedMatchIndicies = []
131 # Run over subsequent data.
132 for diaSourceId, diaSrc in orderedSources.iterrows():
133 # Find matches.
134 matchResult = self.findMatches(diaSrc["ra"],
135 diaSrc["dec"],
136 2*self.config.tolerance,
137 healPixIndices,
138 diaObjectCat)
139 dists = matchResult.dists
140 matches = matchResult.matches
141 # Create a new DiaObject if no match found.
142 if dists is None:
143 self.addNewDiaObject(diaSrc,
144 diaSources,
145 visit,
146 detector,
147 diaSourceId,
148 diaObjectCat,
149 idCat,
150 diaObjectCoords,
151 healPixIndices)
152 continue
153 # If matched, update catalogs and arrays.
154 if np.min(dists) < np.deg2rad(self.config.tolerance/3600):
155 matchDistArg = np.argmin(dists)
156 matchIndex = matches[matchDistArg]
157 # Test to see if the DiaObject has been used.
158 if np.isin([matchIndex], usedMatchIndicies).sum() < 1:
159 self.updateCatalogs(matchIndex,
160 diaSrc,
161 diaSources,
162 visit,
163 detector,
164 diaSourceId,
165 diaObjectCat,
166 diaObjectCoords,
167 healPixIndices)
168 usedMatchIndicies.append(matchIndex)
169 # If the matched DiaObject has already been used, create a
170 # new DiaObject for this DiaSource.
171 else:
172 self.addNewDiaObject(diaSrc,
173 diaSources,
174 visit,
175 detector,
176 diaSourceId,
177 diaObjectCat,
178 idCat,
179 diaObjectCoords,
180 healPixIndices)
181 # Create new DiaObject if no match found within the matching
182 # tolerance.
183 else:
184 self.addNewDiaObject(diaSrc,
185 diaSources,
186 visit,
187 detector,
188 diaSourceId,
189 diaObjectCat,
190 idCat,
191 diaObjectCoords,
192 healPixIndices)
193
194 # Drop indices before returning associated diaSource catalog.
195 diaSources.reset_index(inplace=True)
196 del diaSources["visit,detector"]
197 diaSources.set_index("diaSourceId", inplace=True, verify_integrity=True)
198
199 objs = diaObjectCat if diaObjectCat else np.array([], dtype=[('diaObjectId', 'int64'),
200 ('ra', 'float64'),
201 ('dec', 'float64'),
202 ('nDiaSources', 'int64')])
203 diaObjects = pd.DataFrame(data=objs)
204
205 if "diaObjectId" in diaObjects.columns:
206 diaObjects.set_index("diaObjectId", inplace=True, verify_integrity=True)
207
208 return pipeBase.Struct(
209 assocDiaSources=diaSources,
210 diaObjects=diaObjects)
211
213 diaSrc,
214 diaSources,
215 visit,
216 detector,
217 diaSourceId,
218 diaObjCat,
219 idCat,
220 diaObjCoords,
221 healPixIndices):
222 """Create a new DiaObject and append its data.
223
224 Parameters
225 ----------
226 diaSrc : `pandas.Series`
227 Full unassociated DiaSource to create a DiaObject from.
228 diaSources : `pandas.DataFrame`
229 DiaSource catalog to update information in. The catalog is
230 modified in place. Must be indexed on:
231 `(visit, detector), diaSourceId`.
232 visit, detector : `int`
233 Visit and detector ids where ``diaSrc`` was observed.
234 diaSourceId : `int`
235 Unique identifier of the DiaSource.
236 diaObjectCat : `list` of `dict`s
237 Catalog of diaObjects to append the new object o.
238 idCat : `lsst.afw.table.SourceCatalog`
239 Catalog with the IdFactory used to generate unique DiaObject
240 identifiers.
241 diaObjectCoords : `list` of `list`s of `lsst.geom.SpherePoint`s
242 Set of coordinates of DiaSource locations that make up the
243 DiaObject average coordinate.
244 healPixIndices : `list` of `int`s
245 HealPix indices representing the locations of each currently
246 existing DiaObject.
247 """
248 hpIndex = toIndex(self.config.nside,
249 diaSrc["ra"],
250 diaSrc["dec"])
251 healPixIndices.append(hpIndex)
252
253 sphPoint = geom.SpherePoint(diaSrc["ra"],
254 diaSrc["dec"],
255 geom.degrees)
256 diaObjCoords.append([sphPoint])
257
258 diaObjId = idCat.addNew().get("id")
259 diaObjCat.append(self.createDiaObject(diaObjId,
260 diaSrc["ra"],
261 diaSrc["dec"]))
262 diaSources.loc[((visit, detector), diaSourceId), "diaObjectId"] = diaObjId
263
265 matchIndex,
266 diaSrc,
267 diaSources,
268 visit,
269 detector,
270 diaSourceId,
271 diaObjCat,
272 diaObjCoords,
273 healPixIndices):
274 """Update DiaObject and DiaSource values after an association.
275
276 Parameters
277 ----------
278 matchIndex : `int`
279 Array index location of the DiaObject that ``diaSrc`` was
280 associated to.
281 diaSrc : `pandas.Series`
282 Full unassociated DiaSource to create a DiaObject from.
283 diaSources : `pandas.DataFrame`
284 DiaSource catalog to update information in. The catalog is
285 modified in place. Must be indexed on:
286 `(visit, detector), diaSourceId`.
287 visit, detector : `int`
288 Visit and detector ids where ``diaSrc`` was observed.
289 diaSourceId : `int`
290 Unique identifier of the DiaSource.
291 diaObjectCat : `list` of `dict`s
292 Catalog of diaObjects to append the new object o.
293 diaObjectCoords : `list` of `list`s of `lsst.geom.SpherePoint`s
294 Set of coordinates of DiaSource locations that make up the
295 DiaObject average coordinate.
296 healPixIndices : `list` of `int`s
297 HealPix indices representing the locations of each currently
298 existing DiaObject.
299 """
300 # Update location and healPix index.
301 sphPoint = geom.SpherePoint(diaSrc["ra"],
302 diaSrc["dec"],
303 geom.degrees)
304 diaObjCoords[matchIndex].append(sphPoint)
305 aveCoord = geom.averageSpherePoint(diaObjCoords[matchIndex])
306 diaObjCat[matchIndex]["ra"] = aveCoord.getRa().asDegrees()
307 diaObjCat[matchIndex]["dec"] = aveCoord.getDec().asDegrees()
308 nSources = diaObjCat[matchIndex]["nDiaSources"]
309 diaObjCat[matchIndex]["nDiaSources"] = nSources + 1
310 healPixIndices[matchIndex] = toIndex(self.config.nside,
311 diaObjCat[matchIndex]["ra"],
312 diaObjCat[matchIndex]["dec"])
313 # Update DiaObject Id that this source is now associated to.
314 diaSources.loc[((visit, detector), diaSourceId), "diaObjectId"] = \
315 diaObjCat[matchIndex]["diaObjectId"]
316
317 def findMatches(self, src_ra, src_dec, tol, hpIndices, diaObjs):
318 """Search healPixels around DiaSource locations for DiaObjects.
319
320 Parameters
321 ----------
322 src_ra : `float`
323 DiaSource RA location.
324 src_dec : `float`
325 DiaSource Dec location.
326 tol : `float`
327 Size of annulus to convert to covering healPixels and search for
328 DiaObjects.
329 hpIndices : `list` of `int`s
330 List of heal pix indices containing the DiaObjects in ``diaObjs``.
331 diaObjs : `list` of `dict`s
332 Catalog diaObjects to with full location information for comparing
333 to DiaSources.
334
335 Returns
336 -------
337 results : `lsst.pipe.base.Struct`
338 Results struct containing
339
340 ``dists``
341 Array of distances between the current DiaSource diaObjects.
342 (`numpy.ndarray` or `None`)
343 ``matches``
344 Array of array indices of diaObjects this DiaSource matches to.
345 (`numpy.ndarray` or `None`)
346 """
347 match_indices = query_disc(self.config.nside,
348 src_ra,
349 src_dec,
350 np.deg2rad(tol/3600.))
351 matchIndices = np.argwhere(np.isin(hpIndices, match_indices)).flatten()
352
353 if len(matchIndices) < 1:
354 return pipeBase.Struct(dists=None, matches=None)
355
356 dists = np.array(
357 [np.sqrt(np.sum((eq2xyz(src_ra, src_dec)
358 - eq2xyz(diaObjs[match]["ra"],
359 diaObjs[match]["dec"]))**2))
360 for match in matchIndices])
361 return pipeBase.Struct(
362 dists=dists,
363 matches=matchIndices)
364
365 def createDiaObject(self, objId, ra, dec):
366 """Create a simple empty DiaObject with location and id information.
367
368 Parameters
369 ----------
370 objId : `int`
371 Unique ID for this new DiaObject.
372 ra : `float`
373 RA location of this DiaObject.
374 dec : `float`
375 Dec location of this DiaObject
376
377 Returns
378 -------
379 DiaObject : `dict`
380 Dictionary of values representing a DiaObject.
381 """
382 new_dia_object = {"diaObjectId": objId,
383 "ra": ra,
384 "dec": dec,
385 "nDiaSources": 1}
386 return new_dia_object
Point in an unspecified spherical coordinate system.
Definition SpherePoint.h:57
updateCatalogs(self, matchIndex, diaSrc, diaSources, visit, detector, diaSourceId, diaObjCat, diaObjCoords, healPixIndices)
addNewDiaObject(self, diaSrc, diaSources, visit, detector, diaSourceId, diaObjCat, idCat, diaObjCoords, healPixIndices)
findMatches(self, src_ra, src_dec, tol, hpIndices, diaObjs)
SpherePoint averageSpherePoint(std::vector< SpherePoint > const &coords)
Return the average of a list of coordinates.