LSST Applications g04e9c324dd+8c5ae1fdc5,g134cb467dc+b203dec576,g18429d2f64+358861cd2c,g199a45376c+0ba108daf9,g1fd858c14a+dd066899e3,g262e1987ae+ebfced1d55,g29ae962dfc+72fd90588e,g2cef7863aa+aef1011c0b,g35bb328faa+8c5ae1fdc5,g3fd5ace14f+b668f15bc5,g4595892280+3897dae354,g47891489e3+abcf9c3559,g4d44eb3520+fb4ddce128,g53246c7159+8c5ae1fdc5,g67b6fd64d1+abcf9c3559,g67fd3c3899+1f72b5a9f7,g74acd417e5+cb6b47f07b,g786e29fd12+668abc6043,g87389fa792+8856018cbb,g89139ef638+abcf9c3559,g8d7436a09f+bcf525d20c,g8ea07a8fe4+9f5ccc88ac,g90f42f885a+6054cc57f1,g97be763408+06f794da49,g9dd6db0277+1f72b5a9f7,ga681d05dcb+7e36ad54cd,gabf8522325+735880ea63,gac2eed3f23+abcf9c3559,gb89ab40317+abcf9c3559,gbf99507273+8c5ae1fdc5,gd8ff7fe66e+1f72b5a9f7,gdab6d2f7ff+cb6b47f07b,gdc713202bf+1f72b5a9f7,gdfd2d52018+8225f2b331,ge365c994fd+375fc21c71,ge410e46f29+abcf9c3559,geaed405ab2+562b3308c0,gf9a733ac38+8c5ae1fdc5,w.2025.35
LSST Data Management Base Package
Loading...
Searching...
No Matches
sourceMatchStatistics.py
Go to the documentation of this file.
2# LSST Data Management System
3# Copyright 2008, 2009, 2010 LSST Corporation.
4#
5# This product includes software developed by the
6# LSST Project (http://www.lsst.org/).
7#
8# This program is free software: you can redistribute it and/or modify
9# it under the terms of the GNU General Public License as published by
10# the Free Software Foundation, either version 3 of the License, or
11# (at your option) any later version.
12#
13# This program is distributed in the hope that it will be useful,
14# but WITHOUT ANY WARRANTY; without even the implied warranty of
15# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16# GNU General Public License for more details.
17#
18# You should have received a copy of the LSST License Statement and
19# the GNU General Public License along with this program. If not,
20# see <http://www.lsstcorp.org/LegalNotices/>.
21#
22
23__all__ = ["sourceMatchStatistics"]
24
25import numpy as np
26
27
28def sourceMatchStatistics(matchList, log=None):
29 """Compute statistics on the accuracy of a wcs solution, using a
30 precomputed list of matches between an image and a catalog.
31
32 Parameters
33 ----------
34 matchList : `lsst.afw.detection.SourceMatch`
35 List of matches between sources and references to compute statistics
36 on.
37
38 Returns
39 -------
40 values : `dict
41 Value dictionary with fields:
42
43 - diffInPixels_mean : Average distance between image and
44 catalog position in pixels (`float`).
45 - diffInPixels_std : Root mean square of distribution of distances
46 (`float`).
47 - diffInPixels_Q25 : 25% quantile boundary of the match dist
48 distribution (`float`).
49 - diffInPixels_Q50 : 50% quantile boundary of the match dist
50 distribution (`float`).
51 - diffInPixels_Q75 : 75% quantile boundary of the match
52 dist distribution (`float`).
53 """
54
55 size = len(matchList)
56 if size == 0:
57 raise ValueError("matchList contains no elements")
58
59 dist = np.zeros(size)
60 i = 0
61 for match in matchList:
62 catObj = match.first
63 srcObj = match.second
64
65 cx = catObj.getXAstrom()
66 cy = catObj.getYAstrom()
67
68 sx = srcObj.getXAstrom()
69 sy = srcObj.getYAstrom()
70
71 dist[i] = np.hypot(cx-sx, cy-sy)
72 i = i+1
73
74 dist.sort()
75
76 quartiles = []
77 for f in (0.25, 0.50, 0.75):
78 i = int(f*size + 0.5)
79 if i >= size:
80 i = size - 1
81 quartiles.append(dist[i])
82
83 values = {}
84 values['diffInPixels_Q25'] = quartiles[0]
85 values['diffInPixels_Q50'] = quartiles[1]
86 values['diffInPixels_Q75'] = quartiles[2]
87 values['diffInPixels_mean'] = dist.mean()
88 values['diffInPixels_std'] = dist.std()
89
90 return values