Loading [MathJax]/extensions/tex2jax.js
LSST Applications g0fba68d861+aa97b6e50c,g1ec0fe41b4+f536777771,g1fd858c14a+a9301854fb,g35bb328faa+fcb1d3bbc8,g4af146b050+a5c07d5b1d,g4d2262a081+78f4f01b60,g53246c7159+fcb1d3bbc8,g56a49b3a55+9c12191793,g5a012ec0e7+3632fc3ff3,g60b5630c4e+ded28b650d,g67b6fd64d1+ed4b5058f4,g78460c75b0+2f9a1b4bcd,g786e29fd12+cf7ec2a62a,g8352419a5c+fcb1d3bbc8,g87b7deb4dc+7b42cf88bf,g8852436030+e5453db6e6,g89139ef638+ed4b5058f4,g8e3bb8577d+d38d73bdbd,g9125e01d80+fcb1d3bbc8,g94187f82dc+ded28b650d,g989de1cb63+ed4b5058f4,g9d31334357+ded28b650d,g9f33ca652e+50a8019d8c,gabe3b4be73+1e0a283bba,gabf8522325+fa80ff7197,gb1101e3267+d9fb1f8026,gb58c049af0+f03b321e39,gb89ab40317+ed4b5058f4,gcf25f946ba+e5453db6e6,gcf6002c91b+2a0c9e9e84,gd6cbbdb0b4+bb83cc51f8,gdd1046aedd+ded28b650d,gde0f65d7ad+66b3a48cb7,ge278dab8ac+d65b3c2b70,ge410e46f29+ed4b5058f4,gf23fb2af72+b7cae620c0,gf5e32f922b+fcb1d3bbc8,gf67bdafdda+ed4b5058f4,w.2025.16
LSST Data Management Base Package
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
statistic.py
Go to the documentation of this file.
1# This file is part of pipe_tasks.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
21
22__all__ = ['Statistic', 'Count', 'Median', 'Percentile', 'StandardDeviation', 'SigmaIQR', 'SigmaMAD',
23 'Statistics']
24
25from abc import ABCMeta, abstractmethod
26from astropy.stats import mad_std
27from dataclasses import dataclass
28import numpy as np
29from scipy.stats import iqr
30
31
32class Statistic(metaclass=ABCMeta):
33 """Compute a statistic from a list of values.
34 """
35 # TODO: Make this a property after upgrade to Python 3.9
36 @classmethod
37 @abstractmethod
38 def name(cls):
39 pass
40
41 @abstractmethod
42 def value(self, values):
43 """Return the value of the statistic given a set of values.
44
45 Parameters
46 ----------
47 values : `Collection` [`float`]
48 A set of values to compute the statistic for.
49 Returns
50 -------
51 statistic : `float`
52 The value of the statistic.
53 """
54 pass
55
56
57class Count(Statistic):
58 @classmethod
59 def name(cls):
60 return "count"
61
62 """The median of a set of values."""
63 def value(self, values):
64 return len(values)
65
66
68 @classmethod
69 def name(cls):
70 return "median"
71
72 """The median of a set of values."""
73 def value(self, values):
74 return np.median(values)
75
76
77@dataclass(frozen=True)
79 """An arbitrary percentile.
80
81 Parameters
82 ----------
83 percentile : `float`
84 A valid percentile (0 <= p <= 100).
85 """
86 percentile: float
87
88 @classmethod
89 def name(cls):
90 return "percentile"
91
92 def value(self, values):
93 return np.percentile(values, self.percentile)
94
95
97 """The standard deviation (sigma)."""
98 @classmethod
99 def name(cls):
100 return "std"
101
102 def value(self, values):
103 return np.std(values)
104
105
107 """The re-scaled inter-quartile range (sigma equivalent)."""
108 @classmethod
109 def name(cls):
110 return "sigma_iqr"
111
112 def value(self, values):
113 return iqr(values, scale='normal')
114
115
117 """The re-scaled median absolute deviation (sigma equivalent)."""
118 @classmethod
119 def name(cls):
120 return "sigma_mad"
121
122 def value(self, values):
123 return mad_std(values)
124
125
126Statistics = {
127 stat.name(): stat
128 for stat in (Count, Median, Percentile, StandardDeviation, SigmaIQR, SigmaMAD)
129}