LSST Applications g04e9c324dd+8c5ae1fdc5,g134cb467dc+b203dec576,g18429d2f64+358861cd2c,g199a45376c+0ba108daf9,g1fd858c14a+dd066899e3,g262e1987ae+ebfced1d55,g29ae962dfc+72fd90588e,g2cef7863aa+aef1011c0b,g35bb328faa+8c5ae1fdc5,g3fd5ace14f+b668f15bc5,g4595892280+3897dae354,g47891489e3+abcf9c3559,g4d44eb3520+fb4ddce128,g53246c7159+8c5ae1fdc5,g67b6fd64d1+abcf9c3559,g67fd3c3899+1f72b5a9f7,g74acd417e5+cb6b47f07b,g786e29fd12+668abc6043,g87389fa792+8856018cbb,g89139ef638+abcf9c3559,g8d7436a09f+bcf525d20c,g8ea07a8fe4+9f5ccc88ac,g90f42f885a+6054cc57f1,g97be763408+06f794da49,g9dd6db0277+1f72b5a9f7,ga681d05dcb+7e36ad54cd,gabf8522325+735880ea63,gac2eed3f23+abcf9c3559,gb89ab40317+abcf9c3559,gbf99507273+8c5ae1fdc5,gd8ff7fe66e+1f72b5a9f7,gdab6d2f7ff+cb6b47f07b,gdc713202bf+1f72b5a9f7,gdfd2d52018+8225f2b331,ge365c994fd+375fc21c71,ge410e46f29+abcf9c3559,geaed405ab2+562b3308c0,gf9a733ac38+8c5ae1fdc5,w.2025.35
LSST Data Management Base Package
Loading...
Searching...
No Matches
verifyWcs.py
Go to the documentation of this file.
2# LSST Data Management System
3# Copyright 2008, 2009, 2010 LSST Corporation.
4#
5# This product includes software developed by the
6# LSST Project (http://www.lsst.org/).
7#
8# This program is free software: you can redistribute it and/or modify
9# it under the terms of the GNU General Public License as published by
10# the Free Software Foundation, either version 3 of the License, or
11# (at your option) any later version.
12#
13# This program is distributed in the hope that it will be useful,
14# but WITHOUT ANY WARRANTY; without even the implied warranty of
15# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16# GNU General Public License for more details.
17#
18# You should have received a copy of the LSST License Statement and
19# the GNU General Public License along with this program. If not,
20# see <http://www.lsstcorp.org/LegalNotices/>.
21#
22
23__all__ = ["checkMatches"]
24
25
26import numpy as np
27import logging
28
29import lsst.geom
30import lsst.afw.detection as afwDetection
31import lsst.afw.math as afwMath
32import lsst.meas.algorithms as measAlg
33
34_LOG = logging.getLogger(__name__)
35
36
37def checkMatches(srcMatchSet, exposure, log=None):
38 """Check astrometric matches and assess Wcs quality by computing statics
39 over spacial cells in the image.
40
41 Parameters
42 ----------
43 srcMatchSet : `list` of `lsst.afw.table.ReferenceMatch`
44 List of matched sources to a reference catalog.
45 exposure : `lsst.afw.image.Exposure`
46 Image the sources in srcMatchSet were detected/measured in.
47 log : `lsst.log.Log` or `logging.Logger`
48 Logger object.
49
50 Returns
51 -------
52 values : `dict`
53 Result dictionary with fields:
54
55 - ``minObjectsPerCell`` : (`int`)
56 - ``maxObjectsPerCell`` : (`int`)
57 - ``meanObjectsPerCell`` : (`float`)
58 - ``stdObjectsPerCell`` : (`float`)
59 """
60 if not exposure:
61 return {}
62
63 if log is None:
64 log = _LOG
65
66 im = exposure.getMaskedImage().getImage()
67 width, height = im.getWidth(), im.getHeight()
68 nx, ny = 3, 3
69 w, h = width//nx, height//ny
70
71 if w == 0:
72 w = 1
73 while nx*w < width:
74 w += 1
75
76 if h == 0:
77 h = 1
78 while ny*h < height:
79 h += 1
80
81 cellSet = afwMath.SpatialCellSet(
82 lsst.geom.Box2I(lsst.geom.Point2I(0, 0), lsst.geom.Extent2I(width, height)), w, h)
83 #
84 # Populate cellSet
85 #
86 i = -1
87 for m in srcMatchSet:
88 i += 1
89
90 src = m.second
91 csrc = afwDetection.Source()
92 csrc.setId(i)
93 csrc.setXAstrom(src.getXAstrom())
94 csrc.setYAstrom(src.getYAstrom())
95
96 try:
97 cellSet.insertCandidate(measAlg.PsfCandidateF(csrc, exposure.getMaskedImage()))
98 except Exception as e:
99 log.warning("%s", e)
100
101 ncell = len(cellSet.getCellList())
102 nobj = np.ndarray(ncell, dtype='i')
103
104 for i in range(ncell):
105 cell = cellSet.getCellList()[i]
106
107 nobj[i] = cell.size()
108
109 dx = np.ndarray(cell.size())
110 dy = np.ndarray(cell.size())
111
112 j = 0
113 for cand in cell:
114 #
115 # Swig doesn't know that we're a SpatialCellImageCandidate; all it knows is that we have
116 # a SpatialCellCandidate so we need an explicit (dynamic) cast
117 #
118 mid = cand.getSource().getId()
119 dx[j] = srcMatchSet[mid].first.getXAstrom() - srcMatchSet[mid].second.getXAstrom()
120 dy[j] = srcMatchSet[mid].first.getYAstrom() - srcMatchSet[mid].second.getYAstrom()
121
122 j += 1
123
124 log.debug("%s %-30s %8s dx,dy = %5.2f,%5.2f rms_x,y = %5.2f,%5.2f",
125 cell.getLabel(), cell.getBBox(), ("nobj=%d" % cell.size()),
126 dx.mean(), dy.mean(), dx.std(), dy.std())
127
128 nobj.sort()
129
130 values = {}
131 values["minObjectsPerCell"] = int(nobj[0]) # otherwise it's a numpy integral type
132 values["maxObjectsPerCell"] = int(nobj[-1])
133 values["meanObjectsPerCell"] = nobj.mean()
134 values["stdObjectsPerCell"] = nobj.std()
135
136 return values
A collection of SpatialCells covering an entire image.
An integer coordinate rectangle.
Definition Box.h:55
checkMatches(srcMatchSet, exposure, log=None)
Definition verifyWcs.py:37