LSST Applications g0b6bd0c080+a72a5dd7e6,g1182afd7b4+2a019aa3bb,g17e5ecfddb+2b8207f7de,g1d67935e3f+06cf436103,g38293774b4+ac198e9f13,g396055baef+6a2097e274,g3b44f30a73+6611e0205b,g480783c3b1+98f8679e14,g48ccf36440+89c08d0516,g4b93dc025c+98f8679e14,g5c4744a4d9+a302e8c7f0,g613e996a0d+e1c447f2e0,g6c8d09e9e7+25247a063c,g7271f0639c+98f8679e14,g7a9cd813b8+124095ede6,g9d27549199+a302e8c7f0,ga1cf026fa3+ac198e9f13,ga32aa97882+7403ac30ac,ga786bb30fb+7a139211af,gaa63f70f4e+9994eb9896,gabf319e997+ade567573c,gba47b54d5d+94dc90c3ea,gbec6a3398f+06cf436103,gc6308e37c7+07dd123edb,gc655b1545f+ade567573c,gcc9029db3c+ab229f5caf,gd01420fc67+06cf436103,gd877ba84e5+06cf436103,gdb4cecd868+6f279b5b48,ge2d134c3d5+cc4dbb2e3f,ge448b5faa6+86d1ceac1d,gecc7e12556+98f8679e14,gf3ee170dca+25247a063c,gf4ac96e456+ade567573c,gf9f5ea5b4d+ac198e9f13,gff490e6085+8c2580be5c,w.2022.27
LSST Data Management Base Package
How to manipulate images from python

How to manipulate images from python

You can use the C++ APIs to manipulate images and bits of images from python, e.g.

import lsst.afw.geom as afwGeom
im = afwImage.ImageF(10, 20)
bbox = afwGeom.BoxI(afwGeom.PointI(1, 2), afwGeom.ExtentI(4, 6))
sim = im.Factory(im, bbox)
sim.set(100)
del sim
AmpInfoBoxKey bbox
Definition: Amplifier.cc:117
Backwards-compatibility support for depersisting the old Calib (FluxMag0/FluxMag0Err) objects.
A base class for image defects.

sets a 4x10 portion of image im to 100 (I used im.Factory to avoid repeating afwImage.ImageF, rendering the code non-generic). I can't simply say sim = 100 as that'd make sim an integer rather than setting the pixel values to 100. I used an Image, but a Mask or a MaskedImage would work too (and I can create a sub-Exposure, although I can't assign to it).

This syntax gets boring fast.

We accordingly added some syntactic sugar at the swig level. I can write the preceeding example as:

im[1:5, 2:8] = 100

i.e. create a subimage and assign to it. afw's image slices are always shallow (but you can clone them as we shall see).

Note that the order is [x, y]**. This is consistent with our C++ code (e.g. it's PointI(x, y)), but different from numpy's matrix-like [row, column].

This opens up various possiblities; the following all work:

im[-1, :] = -5
im[..., 18] = -5 # the same as im[:, 18]
im[4, 10] = 10
im[-3:, -2:] = 100
im[-2, -2] = -10
sim = im[1:4, 6:10]
sim[:] = -1
im[0:4, 0:4] = im[2:6, 8:12]

You might expect to be able to say print im[0,20] but you won't get what you expect (it's an image, not a pixel value); say print float(im[0,20]) instead.

The one remaining thing that you can't do it make a deep copy (the left-hand-side has to pre-exist), but fortunately

im2 = im[0:3, 0:5].clone()

works.

numpy

You will remember that the previous section used [x, y] whereas numpy uses [row, column] which is different; you have been warned.

You can achieve similar effects using numpy. For example, after creating im as above, I can use getArray to return a view of the image (i.e. the numpy object shares memory with the C++ object), so:

import numpy as np
nim = im.getArray()
nim[1:5, 2:8] = 100

will also set a sub-image's value (but a different sub-image from im[1:5, 2:8]). You can do more complex operations using numpy syntax, e.g.

nim = im.getArray()
nim[:] = 100 + np.sin(nim) - 2*nim

which is very convenient, although there's a good chance that you'll be creating temporaries the size of im.