LSST Applications g0b6bd0c080+a72a5dd7e6,g1182afd7b4+2a019aa3bb,g17e5ecfddb+2b8207f7de,g1d67935e3f+06cf436103,g38293774b4+ac198e9f13,g396055baef+6a2097e274,g3b44f30a73+6611e0205b,g480783c3b1+98f8679e14,g48ccf36440+89c08d0516,g4b93dc025c+98f8679e14,g5c4744a4d9+a302e8c7f0,g613e996a0d+e1c447f2e0,g6c8d09e9e7+25247a063c,g7271f0639c+98f8679e14,g7a9cd813b8+124095ede6,g9d27549199+a302e8c7f0,ga1cf026fa3+ac198e9f13,ga32aa97882+7403ac30ac,ga786bb30fb+7a139211af,gaa63f70f4e+9994eb9896,gabf319e997+ade567573c,gba47b54d5d+94dc90c3ea,gbec6a3398f+06cf436103,gc6308e37c7+07dd123edb,gc655b1545f+ade567573c,gcc9029db3c+ab229f5caf,gd01420fc67+06cf436103,gd877ba84e5+06cf436103,gdb4cecd868+6f279b5b48,ge2d134c3d5+cc4dbb2e3f,ge448b5faa6+86d1ceac1d,gecc7e12556+98f8679e14,gf3ee170dca+25247a063c,gf4ac96e456+ade567573c,gf9f5ea5b4d+ac198e9f13,gff490e6085+8c2580be5c,w.2022.27
LSST Data Management Base Package
likelihood.cc
Go to the documentation of this file.
1// -*- lsst-c++ -*-
2/*
3 * LSST Data Management System
4 * Copyright 2008-2013 LSST Corporation.
5 *
6 * This product includes software developed by the
7 * LSST Project (http://www.lsst.org/).
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the LSST License Statement and
20 * the GNU General Public License along with this program. If not,
21 * see <http://www.lsstcorp.org/LegalNotices/>.
22 */
23
24#include "pybind11/pybind11.h"
25
26#include "ndarray/pybind11.h"
27
29
30namespace py = pybind11;
31using namespace pybind11::literals;
32
33namespace lsst {
34namespace meas {
35namespace modelfit {
36namespace {
37
38using PyLikelihood = py::class_<Likelihood, std::shared_ptr<Likelihood>>;
39
40PYBIND11_MODULE(likelihood, mod) {
41 py::module::import("lsst.meas.modelfit.model");
42
43 PyLikelihood cls(mod, "Likelihood");
44 cls.def("getDataDim", &Likelihood::getDataDim);
45 cls.def("getAmplitudeDim", &Likelihood::getAmplitudeDim);
46 cls.def("getNonlinearDim", &Likelihood::getNonlinearDim);
47 cls.def("getFixedDim", &Likelihood::getFixedDim);
48 cls.def("getFixed", &Likelihood::getFixed);
49 cls.def("getData", &Likelihood::getData);
50 cls.def("getUnweightedData", &Likelihood::getUnweightedData);
51 cls.def("getWeights", &Likelihood::getWeights);
52 cls.def("getVariance", &Likelihood::getVariance);
53 cls.def("getModel", &Likelihood::getModel);
54 cls.def("computeModelMatrix", &Likelihood::computeModelMatrix, "modelMatrix"_a, "nonlinear"_a,
55 "doApplyWeights"_a = true);
56}
57
58}
59}
60}
61} // namespace lsst::meas::modelfit::anonymous
std::shared_ptr< Model > getModel() const
Return an object that defines the model and its parameters.
Definition: Likelihood.h:105
ndarray::Array< Pixel const, 1, 1 > getUnweightedData() const
Return the vector of unweighted data points .
Definition: Likelihood.h:92
int getDataDim() const
Return the number of data points.
Definition: Likelihood.h:74
virtual void computeModelMatrix(ndarray::Array< Pixel, 2,-1 > const &modelMatrix, ndarray::Array< Scalar const, 1, 1 > const &nonlinear, bool doApplyWeights=true) const =0
Evaluate the model for the given vector of nonlinear parameters.
ndarray::Array< Pixel const, 1, 1 > getVariance() const
Return the vector of per-data-point variances.
Definition: Likelihood.h:102
int getNonlinearDim() const
Return the number of nonlinear parameters (which parameterize the model matrix)
Definition: Likelihood.h:80
ndarray::Array< Pixel const, 1, 1 > getWeights() const
Return the vector of weights applied to data points and model matrix rows.
Definition: Likelihood.h:99
ndarray::Array< Scalar const, 1, 1 > getFixed() const
Return the vector of fixed nonlinear parameters.
Definition: Likelihood.h:86
ndarray::Array< Pixel const, 1, 1 > getData() const
Return the vector of weighted, scaled data points .
Definition: Likelihood.h:89
int getAmplitudeDim() const
Return the number of linear parameters (columns of the model matrix)
Definition: Likelihood.h:77
int getFixedDim() const
Return the number of fixed nonlinear parameters (set on Likelihood construction)
Definition: Likelihood.h:83
PYBIND11_MODULE(_cameraGeom, mod)
Definition: _cameraGeom.cc:38
A base class for image defects.