LSST Applications g070148d5b3+33e5256705,g0d53e28543+25c8b88941,g0da5cf3356+2dd1178308,g1081da9e2a+62d12e78cb,g17e5ecfddb+7e422d6136,g1c76d35bf8+ede3a706f7,g295839609d+225697d880,g2e2c1a68ba+cc1f6f037e,g2ffcdf413f+853cd4dcde,g38293774b4+62d12e78cb,g3b44f30a73+d953f1ac34,g48ccf36440+885b902d19,g4b2f1765b6+7dedbde6d2,g5320a0a9f6+0c5d6105b6,g56b687f8c9+ede3a706f7,g5c4744a4d9+ef6ac23297,g5ffd174ac0+0c5d6105b6,g6075d09f38+66af417445,g667d525e37+2ced63db88,g670421136f+2ced63db88,g71f27ac40c+2ced63db88,g774830318a+463cbe8d1f,g7876bc68e5+1d137996f1,g7985c39107+62d12e78cb,g7fdac2220c+0fd8241c05,g96f01af41f+368e6903a7,g9ca82378b8+2ced63db88,g9d27549199+ef6ac23297,gabe93b2c52+e3573e3735,gb065e2a02a+3dfbe639da,gbc3249ced9+0c5d6105b6,gbec6a3398f+0c5d6105b6,gc9534b9d65+35b9f25267,gd01420fc67+0c5d6105b6,geee7ff78d7+a14128c129,gf63283c776+ede3a706f7,gfed783d017+0c5d6105b6,w.2022.47
LSST Data Management Base Package
|
You can use the C++ APIs to manipulate images and bits of images from python, e.g.
sets a 4x10
portion of image im
to 100 (I used im.Factory
to avoid repeating afwImage.ImageF
, rendering the code non-generic). I can't simply say sim
=
100
as that'd make sim
an integer rather than setting the pixel values to 100. I used an Image, but a Mask or a MaskedImage would work too (and I can create a sub-Exposure, although I can't assign to it).
This syntax gets boring fast.
We accordingly added some syntactic sugar at the swig level. I can write the preceeding example as:
i.e. create a subimage and assign to it. afw's image slices are always shallow (but you can clone
them as we shall see).
Note that the order is [x, y]
**. This is consistent with our C++ code (e.g. it's PointI(x, y)
), but different from numpy's matrix-like [row, column]
.
This opens up various possiblities; the following all work:
You might expect to be able to say print
im
[0,20] but you won't get what you expect (it's an image, not a pixel value); say print
float(im[0,20])
instead.
The one remaining thing that you can't do it make a deep copy (the left-hand-side has to pre-exist), but fortunately
works.
You will remember that the previous section used [x, y]
whereas numpy uses [row, column]
which is different; you have been warned.
You can achieve similar effects using numpy
. For example, after creating im
as above, I can use getArray
to return a view of the image (i.e. the numpy object shares memory with the C++ object), so:
will also set a sub-image's value (but a different sub-image from im[1:5, 2:8]
). You can do more complex operations using numpy
syntax, e.g.
which is very convenient, although there's a good chance that you'll be creating temporaries the size of im
.