LSSTApplications  16.0-11-g09ed895+2,16.0-11-g12e47bd,16.0-11-g9bb73b2+6,16.0-12-g5c924a4+6,16.0-14-g9a974b3+1,16.0-15-g1417920+1,16.0-15-gdd5ca33+1,16.0-16-gf0259e2,16.0-17-g31abd91+7,16.0-17-g7d7456e+7,16.0-17-ga3d2e9f+13,16.0-18-ga4d4bcb+1,16.0-18-gd06566c+1,16.0-2-g0febb12+21,16.0-2-g9d5294e+69,16.0-2-ga8830df+6,16.0-20-g21842373+7,16.0-24-g3eae5ec,16.0-28-gfc9ea6c+4,16.0-29-ge8801f9,16.0-3-ge00e371+34,16.0-4-g18f3627+13,16.0-4-g5f3a788+20,16.0-4-ga3eb747+10,16.0-4-gabf74b7+29,16.0-4-gb13d127+6,16.0-49-g42e581f7+6,16.0-5-g27fb78a+7,16.0-5-g6a53317+34,16.0-5-gb3f8a4b+87,16.0-6-g9321be7+4,16.0-6-gcbc7b31+42,16.0-6-gf49912c+29,16.0-7-gd2eeba5+51,16.0-71-ge89f8615e,16.0-8-g21fd5fe+29,16.0-8-g3a9f023+20,16.0-8-g4734f7a+1,16.0-8-g5858431+3,16.0-9-gf5c1f43+8,master-gd73dc1d098+1,w.2019.01
LSSTDataManagementBasePackage
Namespaces | Functions
curve.h File Reference

This file contains functions for space-filling curves. More...

#include <cstdint>
#include <tuple>

Go to the source code of this file.

Namespaces

 lsst
 A base class for image defects.
 
 lsst::sphgeom
 

Functions

uint64_t lsst::sphgeom::mortonIndex (uint32_t x, uint32_t y)
 mortonIndex interleaves the bits of x and y. More...
 
std::tuple< uint32_t, uint32_t > lsst::sphgeom::mortonIndexInverse (uint64_t z)
 mortonIndexInverse separates the even and odd bits of z. More...
 
uint64_t lsst::sphgeom::mortonToHilbert (uint64_t z, int m)
 mortonToHilbert converts the 2m-bit Morton index z to the corresponding Hilbert index. More...
 
uint64_t lsst::sphgeom::hilbertToMorton (uint64_t h, int m)
 hilbertToMorton converts the 2m-bit Hilbert index h to the corresponding Morton index. More...
 
uint64_t lsst::sphgeom::hilbertIndex (uint32_t x, uint32_t y, int m)
 hilbertIndex returns the index of (x, y) in a 2-D Hilbert curve. More...
 
std::tuple< uint32_t, uint32_t > lsst::sphgeom::hilbertIndexInverse (uint64_t h, int m)
 hilbertIndexInverse returns the point (x, y) with Hilbert index h, where x and y are m bit integers. More...
 
uint8_t lsst::sphgeom::log2 (uint64_t x)
 
uint8_t lsst::sphgeom::log2 (uint32_t x)
 

Detailed Description

This file contains functions for space-filling curves.

Mappings between 2-D points with non-negative integer coordinates and their corresponding Morton or Hilbert indexes are provided.

The Morton order implementation, mortonIndex, is straightforward. The Hilbert order implementation is derived from Algorithm 2 in:

C. Hamilton. Compact Hilbert indices. Technical Report CS-2006-07, Dalhousie University, Faculty of Computer Science, Jul 2006. https://www.cs.dal.ca/research/techreports/cs-2006-07

Using the variable names from that paper, n is fixed at 2. As a first step, the arithmetic in the loop over the bits of the input coordinates is replaced by a table lookup. In particular, the lookup maps the values of (e, d, l) at the beginning of a loop iteration to the values (e, d, w) at the end. Since e and d can both be represented by a single bit, and l and w are 2 bits wide, the lookup table has 16 4 bit entries and fits in a single 64 bit integer constant (0x8d3ec79a6b5021f4). The implementation then looks like:

inline uint64_t hilbertIndex(uint32_t x, uint32_t y, uint32_t m) {
    uint64_t const z = mortonIndex(x, y);
    uint64_t h = 0;
    uint64_t i = 0;
    for (m = 2 * m; m != 0;) {
        m -= 2;
        i = (i & 0xc) | ((z >> m) & 3);
        i = UINT64_C(0x8d3ec79a6b5021f4) >> (i * 4);
        h = (h << 2) | (i & 3);
    }
    return h;
}

Note that interleaving x and y with mortonIndex beforehand allows the loop to extract 2 bits at a time from z, rather than extracting bits from x and y and then pasting them together. This lowers the total operation count.

Performance is further increased by executing j loop iterations at a time. This requires using a larger lookup table that maps the values of e and d at the beginning of a loop iteration, along with 2j input bits, to the values of e and d after j iterations, along with 2j output bits. In this implementation, j = 3, which corresponds to a 256 byte LUT. On recent Intel CPUs the LUT fits in 4 cache lines, and, because of adjacent cache line prefetch, should become cache resident after just 2 misses.

For a helpful presentation of the technical report, as well as a reference implementation of its algorithms in Python, see Pierre de Buyl's notebook. The Hilbert curve lookup tables below were generated by a modification of that code (available in makeHilbertLuts.py).

Definition in file curve.h.