LSSTApplications
16.0-10-g0ee56ad+5,16.0-11-ga33d1f2+5,16.0-12-g3ef5c14+3,16.0-12-g71e5ef5+18,16.0-12-gbdf3636+3,16.0-13-g118c103+3,16.0-13-g8f68b0a+3,16.0-15-gbf5c1cb+4,16.0-16-gfd17674+3,16.0-17-g7c01f5c+3,16.0-18-g0a50484+1,16.0-20-ga20f992+8,16.0-21-g0e05fd4+6,16.0-21-g15e2d33+4,16.0-22-g62d8060+4,16.0-22-g847a80f+4,16.0-25-gf00d9b8+1,16.0-28-g3990c221+4,16.0-3-gf928089+3,16.0-32-g88a4f23+5,16.0-34-gd7987ad+3,16.0-37-gc7333cb+2,16.0-4-g10fc685+2,16.0-4-g18f3627+26,16.0-4-g5f3a788+26,16.0-5-gaf5c3d7+4,16.0-5-gcc1f4bb+1,16.0-6-g3b92700+4,16.0-6-g4412fcd+3,16.0-6-g7235603+4,16.0-69-g2562ce1b+2,16.0-8-g14ebd58+4,16.0-8-g2df868b+1,16.0-8-g4cec79c+6,16.0-8-gadf6c7a+1,16.0-8-gfc7ad86,16.0-82-g59ec2a54a+1,16.0-9-g5400cdc+2,16.0-9-ge6233d7+5,master-g2880f2d8cf+3,v17.0.rc1
LSSTDataManagementBasePackage
|
This file contains functions for space-filling curves. More...
#include <cstdint>
#include <tuple>
Go to the source code of this file.
Namespaces | |
lsst | |
A base class for image defects. | |
lsst::sphgeom | |
Functions | |
uint64_t | lsst::sphgeom::mortonIndex (uint32_t x, uint32_t y) |
mortonIndex interleaves the bits of x and y. More... | |
std::tuple< uint32_t, uint32_t > | lsst::sphgeom::mortonIndexInverse (uint64_t z) |
mortonIndexInverse separates the even and odd bits of z. More... | |
uint64_t | lsst::sphgeom::mortonToHilbert (uint64_t z, int m) |
mortonToHilbert converts the 2m-bit Morton index z to the corresponding Hilbert index. More... | |
uint64_t | lsst::sphgeom::hilbertToMorton (uint64_t h, int m) |
hilbertToMorton converts the 2m-bit Hilbert index h to the corresponding Morton index. More... | |
uint64_t | lsst::sphgeom::hilbertIndex (uint32_t x, uint32_t y, int m) |
hilbertIndex returns the index of (x, y) in a 2-D Hilbert curve. More... | |
std::tuple< uint32_t, uint32_t > | lsst::sphgeom::hilbertIndexInverse (uint64_t h, int m) |
hilbertIndexInverse returns the point (x, y) with Hilbert index h, where x and y are m bit integers. More... | |
uint8_t | lsst::sphgeom::log2 (uint64_t x) |
uint8_t | lsst::sphgeom::log2 (uint32_t x) |
This file contains functions for space-filling curves.
Mappings between 2-D points with non-negative integer coordinates and their corresponding Morton or Hilbert indexes are provided.
The Morton order implementation, mortonIndex, is straightforward. The Hilbert order implementation is derived from Algorithm 2 in:
C. Hamilton. Compact Hilbert indices. Technical Report CS-2006-07, Dalhousie University, Faculty of Computer Science, Jul 2006. https://www.cs.dal.ca/research/techreports/cs-2006-07
Using the variable names from that paper, n is fixed at 2. As a first step, the arithmetic in the loop over the bits of the input coordinates is replaced by a table lookup. In particular, the lookup maps the values of (e, d, l) at the beginning of a loop iteration to the values (e, d, w) at the end. Since e and d can both be represented by a single bit, and l and w are 2 bits wide, the lookup table has 16 4 bit entries and fits in a single 64 bit integer constant (0x8d3ec79a6b5021f4). The implementation then looks like:
inline uint64_t hilbertIndex(uint32_t x, uint32_t y, uint32_t m) { uint64_t const z = mortonIndex(x, y); uint64_t h = 0; uint64_t i = 0; for (m = 2 * m; m != 0;) { m -= 2; i = (i & 0xc) | ((z >> m) & 3); i = UINT64_C(0x8d3ec79a6b5021f4) >> (i * 4); h = (h << 2) | (i & 3); } return h; }
Note that interleaving x and y with mortonIndex beforehand allows the loop to extract 2 bits at a time from z, rather than extracting bits from x and y and then pasting them together. This lowers the total operation count.
Performance is further increased by executing j loop iterations at a time. This requires using a larger lookup table that maps the values of e and d at the beginning of a loop iteration, along with 2j input bits, to the values of e and d after j iterations, along with 2j output bits. In this implementation, j = 3, which corresponds to a 256 byte LUT. On recent Intel CPUs the LUT fits in 4 cache lines, and, because of adjacent cache line prefetch, should become cache resident after just 2 misses.
For a helpful presentation of the technical report, as well as a reference implementation of its algorithms in Python, see Pierre de Buyl's notebook. The Hilbert curve lookup tables below were generated by a modification of that code (available in makeHilbertLuts.py).
Definition in file curve.h.