LSSTApplications  17.0+124,17.0+14,17.0+73,18.0.0+37,18.0.0+80,18.0.0-4-g68ffd23+4,18.1.0-1-g0001055+12,18.1.0-1-g03d53ef+5,18.1.0-1-g1349e88+55,18.1.0-1-g2505f39+44,18.1.0-1-g5315e5e+4,18.1.0-1-g5e4b7ea+14,18.1.0-1-g7e8fceb+4,18.1.0-1-g85f8cd4+48,18.1.0-1-g8ff0b9f+4,18.1.0-1-ga2c679d+1,18.1.0-1-gd55f500+35,18.1.0-10-gb58edde+2,18.1.0-11-g0997b02+4,18.1.0-13-gfe4edf0b+12,18.1.0-14-g259bd21+21,18.1.0-19-gdb69f3f+2,18.1.0-2-g5f9922c+24,18.1.0-2-gd3b74e5+11,18.1.0-2-gfbf3545+32,18.1.0-26-g728bddb4+5,18.1.0-27-g6ff7ca9+2,18.1.0-3-g52aa583+25,18.1.0-3-g8ea57af+9,18.1.0-3-gb69f684+42,18.1.0-3-gfcaddf3+6,18.1.0-32-gd8786685a,18.1.0-4-gf3f9b77+6,18.1.0-5-g1dd662b+2,18.1.0-5-g6dbcb01+41,18.1.0-6-gae77429+3,18.1.0-7-g9d75d83+9,18.1.0-7-gae09a6d+30,18.1.0-9-gc381ef5+4,w.2019.45
LSSTDataManagementBasePackage
splineInterpolate.cc
// -*- LSST-C++ -*-
/*
* LSST Data Management System
* Copyright 2008, 2009, 2010 LSST Corporation.
*
* This product includes software developed by the
* LSST Project (http://www.lsst.org/).
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the LSST License Statement and
* the GNU General Public License along with this program. If not,
* see <http://www.lsstcorp.org/LegalNotices/>.
*/
#include <iostream>
#include <cmath>
#include <vector>
#include <memory>
using namespace std;
namespace math = lsst::afw::math;
int main() {
// create x,y vector<>s containing a sin() function
int const nX = 20;
double const xLo = 0;
double const xHi = 2.0 * M_PI;
double const range = xHi - xLo;
for (int i = 0; i < nX; ++i) {
x[i] = xLo + static_cast<double>(i) / (nX - 1) * range;
y[i] = sin(x[i]);
}
// create a new x vector<> on a different grid and extending beyond the bounds
// of the interpolation range to tests extrapolation properties
int const nX2 = 100;
vector<double> x2(nX2);
for (int i = 0; i < nX2; ++i) {
x2[i] = xLo + (((nX + 2.0) / nX) * static_cast<double>(i) / (nX2 - 1) - 1.0 / nX) * range;
}
// declare an spline interpolate object. the constructor computes the first derivatives
std::shared_ptr<math::Interpolate> yinterpS = math::makeInterpolate(x, y, math::Interpolate::LINEAR);
// declare a linear interpolate object. the constructor computes the second derivatives
math::makeInterpolate(x, y, math::Interpolate::CUBIC_SPLINE);
// output the interpolated y values, 1st derivatives, and 2nd derivatives.
for (int i = 0; i < nX2; ++i) {
cout << i << " " << x2[i] << " " << yinterpL->interpolate(x2[i]) << " "
<< yinterpS->interpolate(x2[i]) << " " << endl;
}
return 0;
}