LSSTApplications
18.0.0+106,18.0.0+50,19.0.0,19.0.0+1,19.0.0+10,19.0.0+11,19.0.0+13,19.0.0+17,19.0.0+2,19.0.0-1-g20d9b18+6,19.0.0-1-g425ff20,19.0.0-1-g5549ca4,19.0.0-1-g580fafe+6,19.0.0-1-g6fe20d0+1,19.0.0-1-g7011481+9,19.0.0-1-g8c57eb9+6,19.0.0-1-gb5175dc+11,19.0.0-1-gdc0e4a7+9,19.0.0-1-ge272bc4+6,19.0.0-1-ge3aa853,19.0.0-10-g448f008b,19.0.0-12-g6990b2c,19.0.0-2-g0d9f9cd+11,19.0.0-2-g3d9e4fb2+11,19.0.0-2-g5037de4,19.0.0-2-gb96a1c4+3,19.0.0-2-gd955cfd+15,19.0.0-3-g2d13df8,19.0.0-3-g6f3c7dc,19.0.0-4-g725f80e+11,19.0.0-4-ga671dab3b+1,19.0.0-4-gad373c5+3,19.0.0-5-ga2acb9c+2,19.0.0-5-gfe96e6c+2,w.2020.01
LSSTDataManagementBasePackage
|
You can use the C++ APIs to manipulate images and bits of images from python, e.g.
sets a 4x10
portion of image im
to 100 (I used im.Factory
to avoid repeating afwImage.ImageF
, rendering the code non-generic). I can't simply say sim
=
100
as that'd make sim
an integer rather than setting the pixel values to 100. I used an Image, but a Mask or a MaskedImage would work too (and I can create a sub-Exposure, although I can't assign to it).
This syntax gets boring fast.
We accordingly added some syntactic sugar at the swig level. I can write the preceeding example as:
i.e. create a subimage and assign to it. afw's image slices are always shallow (but you can clone
them as we shall see).
Note that the order is [x, y]
**. This is consistent with our C++ code (e.g. it's PointI(x, y)
), but different from numpy's matrix-like [row, column]
.
This opens up various possiblities; the following all work:
You might expect to be able to say print
im
[0,20] but you won't get what you expect (it's an image, not a pixel value); say print
float(im[0,20])
instead.
The one remaining thing that you can't do it make a deep copy (the left-hand-side has to pre-exist), but fortunately
works.
You will remember that the previous section used [x, y]
whereas numpy uses [row, column]
which is different; you have been warned.
You can achieve similar effects using numpy
. For example, after creating im
as above, I can use getArray
to return a view of the image (i.e. the numpy object shares memory with the C++ object), so:
will also set a sub-image's value (but a different sub-image from im[1:5, 2:8]
). You can do more complex operations using numpy
syntax, e.g.
which is very convenient, although there's a good chance that you'll be creating temporaries the size of im
.