LSSTApplications  19.0.0-14-gb0260a2+72efe9b372,20.0.0+7927753e06,20.0.0+8829bf0056,20.0.0+995114c5d2,20.0.0+b6f4b2abd1,20.0.0+bddc4f4cbe,20.0.0-1-g253301a+8829bf0056,20.0.0-1-g2b7511a+0d71a2d77f,20.0.0-1-g5b95a8c+7461dd0434,20.0.0-12-g321c96ea+23efe4bbff,20.0.0-16-gfab17e72e+fdf35455f6,20.0.0-2-g0070d88+ba3ffc8f0b,20.0.0-2-g4dae9ad+ee58a624b3,20.0.0-2-g61b8584+5d3db074ba,20.0.0-2-gb780d76+d529cf1a41,20.0.0-2-ged6426c+226a441f5f,20.0.0-2-gf072044+8829bf0056,20.0.0-2-gf1f7952+ee58a624b3,20.0.0-20-geae50cf+e37fec0aee,20.0.0-25-g3dcad98+544a109665,20.0.0-25-g5eafb0f+ee58a624b3,20.0.0-27-g64178ef+f1f297b00a,20.0.0-3-g4cc78c6+e0676b0dc8,20.0.0-3-g8f21e14+4fd2c12c9a,20.0.0-3-gbd60e8c+187b78b4b8,20.0.0-3-gbecbe05+48431fa087,20.0.0-38-ge4adf513+a12e1f8e37,20.0.0-4-g97dc21a+544a109665,20.0.0-4-gb4befbc+087873070b,20.0.0-4-gf910f65+5d3db074ba,20.0.0-5-gdfe0fee+199202a608,20.0.0-5-gfbfe500+d529cf1a41,20.0.0-6-g64f541c+d529cf1a41,20.0.0-6-g9a5b7a1+a1cd37312e,20.0.0-68-ga3f3dda+5fca18c6a4,20.0.0-9-g4aef684+e18322736b,w.2020.45
LSSTDataManagementBasePackage
PolynomialFunction2d.cc
Go to the documentation of this file.
1 // -*- LSST-C++ -*-
2 /*
3  * Developed for the LSST Data Management System.
4  * This product includes software developed by the LSST Project
5  * (https://www.lsst.org).
6  * See the COPYRIGHT file at the top-level directory of this distribution
7  * for details of code ownership.
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program. If not, see <https://www.gnu.org/licenses/>.
21  */
22 
23 #include <vector>
24 
28 
29 
30 namespace lsst { namespace geom { namespace polynomials {
31 
32 namespace {
33 
34 Eigen::VectorXd computePowers(double x, int n) {
35  Eigen::VectorXd r(n + 1);
36  r[0] = 1.0;
37  for (int i = 1; i <= n; ++i) {
38  r[i] = r[i - 1]*x;
39  }
40  return r;
41 }
42 
43 } // anonymous
44 
45 
46 template <PackingOrder packing>
48  auto const & basis = f.getBasis();
49  std::vector<SafeSum<double>> sums(basis.size());
50  std::size_t const n = basis.getOrder();
51  auto rPow = computePowers(basis.getScaling().getX().getScale(), n);
52  auto sPow = computePowers(basis.getScaling().getY().getScale(), n);
53  auto uPow = computePowers(basis.getScaling().getX().getShift(), n);
54  auto vPow = computePowers(basis.getScaling().getY().getShift(), n);
55  BinomialMatrix binomial(basis.getNested().getOrder());
56  for (auto const & i : basis.getIndices()) {
57  for (std::size_t j = 0; j <= i.nx; ++j) {
58  double tmp = binomial(i.nx, j)*uPow[j] *
59  f[i.flat]*rPow[i.nx]*sPow[i.ny];
60  for (std::size_t k = 0; k <= i.ny; ++k) {
61  sums[basis.index(i.nx - j, i.ny - k)] +=
62  binomial(i.ny, k)*vPow[k]*tmp;
63  }
64  }
65  }
66  Eigen::VectorXd result = Eigen::VectorXd::Zero(basis.size());
67  for (std::size_t i = 0; i < basis.size(); ++i) {
68  result[i] = static_cast<double>(sums[i]);
69  }
70  return makeFunction2d(basis.getNested(), result);
71 }
72 
75 );
78 );
79 
80 }}} // namespace lsst::geom::polynomials
lsst::geom::polynomials::Function2d::getBasis
Basis const & getBasis() const
Return the associated Basis2d object.
Definition: Function2d.h:101
lsst::geom::polynomials::BinomialMatrix
A class that computes binomial coefficients up to a certain power.
Definition: BinomialMatrix.h:45
SafeSum.h
std::vector
STL class.
lsst::geom::polynomials::makeFunction2d
Function2d< Basis > makeFunction2d(Basis const &basis, Eigen::VectorXd const &coefficients)
Create a Function2d of the appropriate type from a Basis2d and an Eigen object containing coefficient...
Definition: Function2d.h:155
PolynomialFunction2d.h
lsst::geom::polynomials::simplified
PolynomialFunction1d simplified(ScaledPolynomialFunction1d const &f)
Calculate the standard polynomial function that is equivalent to a scaled standard polynomial functio...
Definition: PolynomialFunction1d.cc:32
x
double x
Definition: ChebyshevBoundedField.cc:277
basis
table::Key< table::Array< double > > basis
Definition: PsfexPsf.cc:361
result
py::object result
Definition: _schema.cc:429
lsst
A base class for image defects.
Definition: imageAlgorithm.dox:1
lsst::geom
Definition: AffineTransform.h:36
lsst::meas::astrom::detail::computePowers
void computePowers(Eigen::VectorXd &r, double x)
Fill an array with integer powers of x, so .
Definition: polynomialUtils.cc:33
std::size_t
lsst::geom::polynomials::Function2d
A 2-d function defined by a series expansion and its coefficients.
Definition: Function2d.h:42
BinomialMatrix.h