LSSTApplications
19.0.0-14-gb0260a2+72efe9b372,20.0.0+7927753e06,20.0.0+8829bf0056,20.0.0+995114c5d2,20.0.0+b6f4b2abd1,20.0.0+bddc4f4cbe,20.0.0-1-g253301a+8829bf0056,20.0.0-1-g2b7511a+0d71a2d77f,20.0.0-1-g5b95a8c+7461dd0434,20.0.0-12-g321c96ea+23efe4bbff,20.0.0-16-gfab17e72e+fdf35455f6,20.0.0-2-g0070d88+ba3ffc8f0b,20.0.0-2-g4dae9ad+ee58a624b3,20.0.0-2-g61b8584+5d3db074ba,20.0.0-2-gb780d76+d529cf1a41,20.0.0-2-ged6426c+226a441f5f,20.0.0-2-gf072044+8829bf0056,20.0.0-2-gf1f7952+ee58a624b3,20.0.0-20-geae50cf+e37fec0aee,20.0.0-25-g3dcad98+544a109665,20.0.0-25-g5eafb0f+ee58a624b3,20.0.0-27-g64178ef+f1f297b00a,20.0.0-3-g4cc78c6+e0676b0dc8,20.0.0-3-g8f21e14+4fd2c12c9a,20.0.0-3-gbd60e8c+187b78b4b8,20.0.0-3-gbecbe05+48431fa087,20.0.0-38-ge4adf513+a12e1f8e37,20.0.0-4-g97dc21a+544a109665,20.0.0-4-gb4befbc+087873070b,20.0.0-4-gf910f65+5d3db074ba,20.0.0-5-gdfe0fee+199202a608,20.0.0-5-gfbfe500+d529cf1a41,20.0.0-6-g64f541c+d529cf1a41,20.0.0-6-g9a5b7a1+a1cd37312e,20.0.0-68-ga3f3dda+5fca18c6a4,20.0.0-9-g4aef684+e18322736b,w.2020.45
LSSTDataManagementBasePackage
|
This file contains functions for space-filling curves. More...
#include <cstdint>
#include <tuple>
Go to the source code of this file.
Namespaces | |
lsst | |
A base class for image defects. | |
lsst::sphgeom | |
Functions | |
uint64_t | lsst::sphgeom::mortonIndex (uint32_t x, uint32_t y) |
mortonIndex interleaves the bits of x and y. More... | |
std::tuple< uint32_t, uint32_t > | lsst::sphgeom::mortonIndexInverse (uint64_t z) |
mortonIndexInverse separates the even and odd bits of z. More... | |
uint64_t | lsst::sphgeom::mortonToHilbert (uint64_t z, int m) |
mortonToHilbert converts the 2m-bit Morton index z to the corresponding Hilbert index. More... | |
uint64_t | lsst::sphgeom::hilbertToMorton (uint64_t h, int m) |
hilbertToMorton converts the 2m-bit Hilbert index h to the corresponding Morton index. More... | |
uint64_t | lsst::sphgeom::hilbertIndex (uint32_t x, uint32_t y, int m) |
hilbertIndex returns the index of (x, y) in a 2-D Hilbert curve. More... | |
std::tuple< uint32_t, uint32_t > | lsst::sphgeom::hilbertIndexInverse (uint64_t h, int m) |
hilbertIndexInverse returns the point (x, y) with Hilbert index h, where x and y are m bit integers. More... | |
uint8_t | lsst::sphgeom::log2 (uint64_t x) |
uint8_t | lsst::sphgeom::log2 (uint32_t x) |
uint8_t | lsst::sphgeom::log2 (uint64_t x) |
uint8_t | lsst::sphgeom::log2 (uint32_t x) |
This file contains functions for space-filling curves.
Mappings between 2-D points with non-negative integer coordinates and their corresponding Morton or Hilbert indexes are provided.
The Morton order implementation, mortonIndex, is straightforward. The Hilbert order implementation is derived from Algorithm 2 in:
C. Hamilton. Compact Hilbert indices. Technical Report CS-2006-07, Dalhousie University, Faculty of Computer Science, Jul 2006. https://www.cs.dal.ca/research/techreports/cs-2006-07
Using the variable names from that paper, n is fixed at 2. As a first step, the arithmetic in the loop over the bits of the input coordinates is replaced by a table lookup. In particular, the lookup maps the values of (e, d, l) at the beginning of a loop iteration to the values (e, d, w) at the end. Since e and d can both be represented by a single bit, and l and w are 2 bits wide, the lookup table has 16 4 bit entries and fits in a single 64 bit integer constant (0x8d3ec79a6b5021f4). The implementation then looks like:
inline uint64_t hilbertIndex(uint32_t x, uint32_t y, uint32_t m) { uint64_t const z = mortonIndex(x, y); uint64_t h = 0; uint64_t i = 0; for (m = 2 * m; m != 0;) { m -= 2; i = (i & 0xc) | ((z >> m) & 3); i = UINT64_C(0x8d3ec79a6b5021f4) >> (i * 4); h = (h << 2) | (i & 3); } return h; }
Note that interleaving x and y with mortonIndex beforehand allows the loop to extract 2 bits at a time from z, rather than extracting bits from x and y and then pasting them together. This lowers the total operation count.
Performance is further increased by executing j loop iterations at a time. This requires using a larger lookup table that maps the values of e and d at the beginning of a loop iteration, along with 2j input bits, to the values of e and d after j iterations, along with 2j output bits. In this implementation, j = 3, which corresponds to a 256 byte LUT. On recent Intel CPUs the LUT fits in 4 cache lines, and, because of adjacent cache line prefetch, should become cache resident after just 2 misses.
For a helpful presentation of the technical report, as well as a reference implementation of its algorithms in Python, see Pierre de Buyl's notebook. The Hilbert curve lookup tables below were generated by a modification of that code (available in makeHilbertLuts.py).
Definition in file curve.h.