LSST Applications  21.0.0+04719a4bac,21.0.0-1-ga51b5d4+f5e6047307,21.0.0-11-g2b59f77+a9c1acf22d,21.0.0-11-ga42c5b2+86977b0b17,21.0.0-12-gf4ce030+76814010d2,21.0.0-13-g1721dae+760e7a6536,21.0.0-13-g3a573fe+768d78a30a,21.0.0-15-g5a7caf0+f21cbc5713,21.0.0-16-g0fb55c1+b60e2d390c,21.0.0-19-g4cded4ca+71a93a33c0,21.0.0-2-g103fe59+bb20972958,21.0.0-2-g45278ab+04719a4bac,21.0.0-2-g5242d73+3ad5d60fb1,21.0.0-2-g7f82c8f+8babb168e8,21.0.0-2-g8f08a60+06509c8b61,21.0.0-2-g8faa9b5+616205b9df,21.0.0-2-ga326454+8babb168e8,21.0.0-2-gde069b7+5e4aea9c2f,21.0.0-2-gecfae73+1d3a86e577,21.0.0-2-gfc62afb+3ad5d60fb1,21.0.0-25-g1d57be3cd+e73869a214,21.0.0-3-g357aad2+ed88757d29,21.0.0-3-g4a4ce7f+3ad5d60fb1,21.0.0-3-g4be5c26+3ad5d60fb1,21.0.0-3-g65f322c+e0b24896a3,21.0.0-3-g7d9da8d+616205b9df,21.0.0-3-ge02ed75+a9c1acf22d,21.0.0-4-g591bb35+a9c1acf22d,21.0.0-4-g65b4814+b60e2d390c,21.0.0-4-gccdca77+0de219a2bc,21.0.0-4-ge8a399c+6c55c39e83,21.0.0-5-gd00fb1e+05fce91b99,21.0.0-6-gc675373+3ad5d60fb1,21.0.0-64-g1122c245+4fb2b8f86e,21.0.0-7-g04766d7+cd19d05db2,21.0.0-7-gdf92d54+04719a4bac,21.0.0-8-g5674e7b+d1bd76f71f,master-gac4afde19b+a9c1acf22d,w.2021.13
LSST Data Management Base Package
How to manipulate images from python

How to manipulate images from python

You can use the C++ APIs to manipulate images and bits of images from python, e.g.

import lsst.afw.geom as afwGeom
im = afwImage.ImageF(10, 20)
bbox = afwGeom.BoxI(afwGeom.PointI(1, 2), afwGeom.ExtentI(4, 6))
sim = im.Factory(im, bbox)
sim.set(100)
del sim
AmpInfoBoxKey bbox
Definition: Amplifier.cc:117
Backwards-compatibility support for depersisting the old Calib (FluxMag0/FluxMag0Err) objects.
A base class for image defects.

sets a 4x10 portion of image im to 100 (I used im.Factory to avoid repeating afwImage.ImageF, rendering the code non-generic). I can't simply say sim = 100 as that'd make sim an integer rather than setting the pixel values to 100. I used an Image, but a Mask or a MaskedImage would work too (and I can create a sub-Exposure, although I can't assign to it).

This syntax gets boring fast.

We accordingly added some syntactic sugar at the swig level. I can write the preceeding example as:

im[1:5, 2:8] = 100

i.e. create a subimage and assign to it. afw's image slices are always shallow (but you can clone them as we shall see).

Note that the order is [x, y]**. This is consistent with our C++ code (e.g. it's PointI(x, y)), but different from numpy's matrix-like [row, column].

This opens up various possiblities; the following all work:

im[-1, :] = -5
im[..., 18] = -5 # the same as im[:, 18]
im[4, 10] = 10
im[-3:, -2:] = 100
im[-2, -2] = -10
sim = im[1:4, 6:10]
sim[:] = -1
im[0:4, 0:4] = im[2:6, 8:12]

You might expect to be able to say print im[0,20] but you won't get what you expect (it's an image, not a pixel value); say print float(im[0,20]) instead.

The one remaining thing that you can't do it make a deep copy (the left-hand-side has to pre-exist), but fortunately

im2 = im[0:3, 0:5].clone()

works.

numpy

You will remember that the previous section used [x, y] whereas numpy uses [row, column] which is different; you have been warned.

You can achieve similar effects using numpy. For example, after creating im as above, I can use getArray to return a view of the image (i.e. the numpy object shares memory with the C++ object), so:

import numpy as np
nim = im.getArray()
nim[1:5, 2:8] = 100

will also set a sub-image's value (but a different sub-image from im[1:5, 2:8]). You can do more complex operations using numpy syntax, e.g.

nim = im.getArray()
nim[:] = 100 + np.sin(nim) - 2*nim

which is very convenient, although there's a good chance that you'll be creating temporaries the size of im.