LSST Applications
21.0.0-147-g0e635eb1+1acddb5be5,22.0.0+052faf71bd,22.0.0+1ea9a8b2b2,22.0.0+6312710a6c,22.0.0+729191ecac,22.0.0+7589c3a021,22.0.0+9f079a9461,22.0.1-1-g7d6de66+b8044ec9de,22.0.1-1-g87000a6+536b1ee016,22.0.1-1-g8e32f31+6312710a6c,22.0.1-10-gd060f87+016f7cdc03,22.0.1-12-g9c3108e+df145f6f68,22.0.1-16-g314fa6d+c825727ab8,22.0.1-19-g93a5c75+d23f2fb6d8,22.0.1-19-gb93eaa13+aab3ef7709,22.0.1-2-g8ef0a89+b8044ec9de,22.0.1-2-g92698f7+9f079a9461,22.0.1-2-ga9b0f51+052faf71bd,22.0.1-2-gac51dbf+052faf71bd,22.0.1-2-gb66926d+6312710a6c,22.0.1-2-gcb770ba+09e3807989,22.0.1-20-g32debb5+b8044ec9de,22.0.1-23-gc2439a9a+fb0756638e,22.0.1-3-g496fd5d+09117f784f,22.0.1-3-g59f966b+1e6ba2c031,22.0.1-3-g849a1b8+f8b568069f,22.0.1-3-gaaec9c0+c5c846a8b1,22.0.1-32-g5ddfab5d3+60ce4897b0,22.0.1-4-g037fbe1+64e601228d,22.0.1-4-g8623105+b8044ec9de,22.0.1-5-g096abc9+d18c45d440,22.0.1-5-g15c806e+57f5c03693,22.0.1-7-gba73697+57f5c03693,master-g6e05de7fdc+c1283a92b8,master-g72cdda8301+729191ecac,w.2021.39
LSST Data Management Base Package
|
You can use the C++ APIs to manipulate images and bits of images from python, e.g.
sets a 4x10
portion of image im
to 100 (I used im.Factory
to avoid repeating afwImage.ImageF
, rendering the code non-generic). I can't simply say sim
=
100
as that'd make sim
an integer rather than setting the pixel values to 100. I used an Image, but a Mask or a MaskedImage would work too (and I can create a sub-Exposure, although I can't assign to it).
This syntax gets boring fast.
We accordingly added some syntactic sugar at the swig level. I can write the preceeding example as:
i.e. create a subimage and assign to it. afw's image slices are always shallow (but you can clone
them as we shall see).
Note that the order is [x, y]
**. This is consistent with our C++ code (e.g. it's PointI(x, y)
), but different from numpy's matrix-like [row, column]
.
This opens up various possiblities; the following all work:
You might expect to be able to say print
im
[0,20] but you won't get what you expect (it's an image, not a pixel value); say print
float(im[0,20])
instead.
The one remaining thing that you can't do it make a deep copy (the left-hand-side has to pre-exist), but fortunately
works.
You will remember that the previous section used [x, y]
whereas numpy uses [row, column]
which is different; you have been warned.
You can achieve similar effects using numpy
. For example, after creating im
as above, I can use getArray
to return a view of the image (i.e. the numpy object shares memory with the C++ object), so:
will also set a sub-image's value (but a different sub-image from im[1:5, 2:8]
). You can do more complex operations using numpy
syntax, e.g.
which is very convenient, although there's a good chance that you'll be creating temporaries the size of im
.