LSST Applications 26.0.0,g0265f82a02+6660c170cc,g07994bdeae+30b05a742e,g0a0026dc87+17526d298f,g0a60f58ba1+17526d298f,g0e4bf8285c+96dd2c2ea9,g0ecae5effc+c266a536c8,g1e7d6db67d+6f7cb1f4bb,g26482f50c6+6346c0633c,g2bbee38e9b+6660c170cc,g2cc88a2952+0a4e78cd49,g3273194fdb+f6908454ef,g337abbeb29+6660c170cc,g337c41fc51+9a8f8f0815,g37c6e7c3d5+7bbafe9d37,g44018dc512+6660c170cc,g4a941329ef+4f7594a38e,g4c90b7bd52+5145c320d2,g58be5f913a+bea990ba40,g635b316a6c+8d6b3a3e56,g67924a670a+bfead8c487,g6ae5381d9b+81bc2a20b4,g93c4d6e787+26b17396bd,g98cecbdb62+ed2cb6d659,g98ffbb4407+81bc2a20b4,g9ddcbc5298+7f7571301f,ga1e77700b3+99e9273977,gae46bcf261+6660c170cc,gb2715bf1a1+17526d298f,gc86a011abf+17526d298f,gcf0d15dbbd+96dd2c2ea9,gdaeeff99f8+0d8dbea60f,gdb4ec4c597+6660c170cc,ge23793e450+96dd2c2ea9,gf041782ebf+171108ac67
LSST Data Management Base Package
|
#include <sstream>
#include "lsst/geom/Point.h"
#include "lsst/geom/Angle.h"
#include "lsst/geom/SpherePoint.h"
#include "lsst/geom/AffineTransform.h"
#include "lsst/geom/LinearTransform.h"
#include "lsst/afw/geom/SkyWcs.h"
#include "lsst/afw/geom/transformFactory.h"
#include "lsst/meas/astrom/SipTransform.h"
Go to the source code of this file.
Namespaces | |
namespace | lsst |
namespace | lsst::meas |
namespace | lsst::meas::astrom |
Functions | |
std::shared_ptr< afw::geom::SkyWcs > | lsst::meas::astrom::makeWcs (SipForwardTransform const &sipForward, SipReverseTransform const &sipReverse, geom::SpherePoint const &skyOrigin) |
Create a new TAN SIP Wcs from a pair of SIP transforms and the sky origin. | |
std::shared_ptr< afw::geom::SkyWcs > | lsst::meas::astrom::transformWcsPixels (afw::geom::SkyWcs const &wcs, geom::AffineTransform const &s) |
Create a new SkyWcs whose pixel coordinate system has been transformed via an affine transform. | |
std::shared_ptr< afw::geom::SkyWcs > | lsst::meas::astrom::rotateWcsPixelsBy90 (afw::geom::SkyWcs const &wcs, int nQuarter, geom::Extent2I const &dimensions) |
Return a new SkyWcs that represents a rotation of the image it corresponds to about the image's center. | |