51 s <<
"value=" << measurement.value <<
", error=" << measurement.error;
57int const SERIALIZATION_VERSION = 1;
59double toNanojansky(
double instFlux,
double scale) {
return instFlux * scale; }
63double toInstFluxFromMagnitude(
double magnitude,
double scale) {
68double toNanojanskyErr(
double instFlux,
double instFluxErr,
double scale,
double scaleErr,
70 return std::abs(nanojansky) *
hypot(instFluxErr / instFlux, scaleErr / scale);
86void toNanojanskyVariance(ndarray::Array<float const, 2, 1>
const &instFlux,
87 ndarray::Array<float const, 2, 1>
const &instFluxVar,
float scaleErr,
88 ndarray::Array<float const, 2, 1>
const &flux, ndarray::Array<float, 2, 1> out) {
89 auto eigenFlux = ndarray::asEigen<Eigen::ArrayXpr>(flux);
90 auto eigenInstFluxVar = ndarray::asEigen<Eigen::ArrayXpr>(instFluxVar);
91 auto eigenInstFlux = ndarray::asEigen<Eigen::ArrayXpr>(instFlux);
92 auto eigenOut = ndarray::asEigen<Eigen::ArrayXpr>(out);
93 eigenOut = eigenFlux.square() *
94 (eigenInstFluxVar / eigenInstFlux.square() + (scaleErr / eigenFlux * eigenInstFlux).square());
97double toMagnitudeErr(
double instFlux,
double instFluxErr,
double scale,
double scaleErr) {
98 return 2.5 /
std::log(10.0) *
hypot(instFluxErr / instFlux, scaleErr / scale);
106 return toNanojansky(instFlux, evaluate(point));
109double PhotoCalib::instFluxToNanojansky(
double instFlux)
const {
110 return toNanojansky(instFlux, _calibrationMean);
113Measurement PhotoCalib::instFluxToNanojansky(
double instFlux,
double instFluxErr,
115 double calibration, error, nanojansky;
116 calibration = evaluate(point);
117 nanojansky = toNanojansky(instFlux, calibration);
118 error = toNanojanskyErr(instFlux, instFluxErr, calibration, _calibrationErr, nanojansky);
122Measurement PhotoCalib::instFluxToNanojansky(
double instFlux,
double instFluxErr)
const {
123 double nanojansky = toNanojansky(instFlux, _calibrationMean);
124 double error = toNanojanskyErr(instFlux, instFluxErr, _calibrationMean, _calibrationErr, nanojansky);
131 auto instFluxKey = sourceRecord.
getSchema().
find<
double>(instFluxField +
"_instFlux").key;
132 auto instFluxErrKey = sourceRecord.
getSchema().
find<
double>(instFluxField +
"_instFluxErr").key;
133 return instFluxToNanojansky(sourceRecord.
get(instFluxKey), sourceRecord.
get(instFluxErrKey), position);
137 ndarray::Array<double, 2, 2>
result =
138 ndarray::allocate(ndarray::makeVector(
int(sourceCatalog.size()), 2));
139 instFluxToNanojanskyArray(sourceCatalog, instFluxField,
result);
145 auto instFluxKey = sourceCatalog.getSchema().find<
double>(instFluxField +
"_instFlux").key;
146 auto instFluxErrKey = sourceCatalog.getSchema().find<
double>(instFluxField +
"_instFluxErr").key;
147 auto nanojanskyKey = sourceCatalog.getSchema().find<
double>(outField +
"_flux").key;
148 auto nanojanskyErrKey = sourceCatalog.getSchema().find<
double>(outField +
"_fluxErr").key;
149 for (
auto &record : sourceCatalog) {
150 auto result = instFluxToNanojansky(record.get(instFluxKey), record.get(instFluxErrKey),
151 record.getCentroid());
152 record.set(nanojanskyKey,
result.value);
153 record.set(nanojanskyErrKey,
result.error);
160 return toMagnitude(instFlux, evaluate(point));
163double PhotoCalib::instFluxToMagnitude(
double instFlux)
const {
164 return toMagnitude(instFlux, _calibrationMean);
167Measurement PhotoCalib::instFluxToMagnitude(
double instFlux,
double instFluxErr,
169 double calibration, error, magnitude;
170 calibration = evaluate(point);
171 magnitude = toMagnitude(instFlux, calibration);
172 error = toMagnitudeErr(instFlux, instFluxErr, calibration, _calibrationErr);
176Measurement PhotoCalib::instFluxToMagnitude(
double instFlux,
double instFluxErr)
const {
177 double magnitude = toMagnitude(instFlux, _calibrationMean);
178 double error = toMagnitudeErr(instFlux, instFluxErr, _calibrationMean, _calibrationErr);
185 auto instFluxKey = sourceRecord.
getSchema().
find<
double>(instFluxField +
"_instFlux").key;
186 auto instFluxErrKey = sourceRecord.
getSchema().
find<
double>(instFluxField +
"_instFluxErr").key;
187 return instFluxToMagnitude(sourceRecord.
get(instFluxKey), sourceRecord.
get(instFluxErrKey), position);
192 ndarray::Array<double, 2, 2>
result =
193 ndarray::allocate(ndarray::makeVector(
int(sourceCatalog.size()), 2));
194 instFluxToMagnitudeArray(sourceCatalog, instFluxField,
result);
200 auto instFluxKey = sourceCatalog.getSchema().find<
double>(instFluxField +
"_instFlux").key;
201 auto instFluxErrKey = sourceCatalog.getSchema().find<
double>(instFluxField +
"_instFluxErr").key;
202 auto magKey = sourceCatalog.getSchema().find<
double>(outField +
"_mag").key;
203 auto magErrKey = sourceCatalog.getSchema().find<
double>(outField +
"_magErr").key;
204 for (
auto &record : sourceCatalog) {
205 auto result = instFluxToMagnitude(record.get(instFluxKey), record.get(instFluxErrKey),
206 record.getCentroid());
207 record.set(magKey,
result.value);
208 record.set(magErrKey,
result.error);
214double PhotoCalib::magnitudeToInstFlux(
double magnitude)
const {
215 return toInstFluxFromMagnitude(magnitude, _calibrationMean);
219 return toInstFluxFromMagnitude(magnitude, evaluate(point));
223 return *(_calibration) / _calibrationMean;
231 return (_calibrationMean == rhs._calibrationMean && _calibrationErr == rhs._calibrationErr &&
232 (*_calibration) == *(rhs._calibration));
236 return calibration->mean();
240 return std::make_unique<PhotoCalib>(*
this);
246 buffer <<
"spatially constant with ";
248 buffer << *_calibration <<
" with ";
249 buffer <<
"mean: " << _calibrationMean <<
" error: " << _calibrationErr;
254 return singleClassEquals(*
this, other);
258 return os << photoCalib.toString();
262 bool includeScaleUncertainty)
const {
267 *(
result.getImage()) *= _calibrationMean;
269 _calibration->multiplyImage(*(
result.getImage()),
true);
271 if (includeScaleUncertainty) {
272 toNanojanskyVariance(maskedImage.getImage()->getArray(), maskedImage.getVariance()->getArray(),
273 _calibrationErr,
result.getImage()->getArray(),
274 result.getVariance()->getArray());
276 toNanojanskyVariance(maskedImage.getImage()->getArray(), maskedImage.getVariance()->getArray(), 0,
277 result.getImage()->getArray(),
result.getVariance()->getArray());
285 auto const &inSchema = catalog.getSchema();
287 mapper.addMinimalSchema(inSchema);
301 keys.reserve(instFluxFields.
size());
302 for (
auto const &field : instFluxFields) {
304 newKey.instFlux = inSchema[inSchema.join(field,
"instFlux")];
306 mapper.addOutputField(FieldD(inSchema.join(field,
"flux"),
"calibrated flux",
"nJy"),
true);
307 newKey.mag =
mapper.addOutputField(
308 FieldD(inSchema.join(field,
"mag"),
"calibrated magnitude",
"mag(AB)"),
true);
310 newKey.instFluxErr = inSchema.find<
double>(inSchema.join(field,
"instFluxErr")).key;
311 newKey.fluxErr =
mapper.addOutputField(
312 FieldD(inSchema.join(field,
"fluxErr"),
"calibrated flux uncertainty",
"nJy"),
true);
313 newKey.magErr =
mapper.addOutputField(
314 FieldD(inSchema.join(field,
"magErr"),
"calibrated magnitude uncertainty",
"mag(AB)"),
319 keys.emplace_back(newKey);
324 output.insert(
mapper, output.begin(), catalog.begin(), catalog.end());
326 auto calibration = evaluateCatalog(output);
330 for (
auto &rec : output) {
331 for (
auto &key : keys) {
332 double instFlux = rec.get(key.instFlux);
333 double nanojansky = toNanojansky(instFlux, calibration[iRec]);
334 rec.set(key.flux, nanojansky);
335 rec.set(key.mag, toMagnitude(instFlux, calibration[iRec]));
336 if (key.instFluxErr.isValid()) {
337 double instFluxErr = rec.get(key.instFluxErr);
338 rec.set(key.fluxErr, toNanojanskyErr(instFlux, instFluxErr, calibration[iRec],
339 _calibrationErr, nanojansky));
341 toMagnitudeErr(instFlux, instFluxErr, calibration[iRec], _calibrationErr));
353 for (
auto const &name : catalog.getSchema().getNames()) {
355 if (name.size() > SUFFIX.
size() + 1 &&
356 name.compare(name.size() - SUFFIX.
size(), SUFFIX.
size(), SUFFIX) == 0) {
357 instFluxFields.
emplace_back(name.substr(0, name.size() - 9));
360 return calibrateCatalog(catalog, instFluxFields);
367class PhotoCalibSchema {
377 PhotoCalibSchema(PhotoCalibSchema
const &) =
delete;
378 PhotoCalibSchema &operator=(PhotoCalibSchema
const &) =
delete;
380 PhotoCalibSchema(PhotoCalibSchema &&) =
delete;
381 PhotoCalibSchema &operator=(PhotoCalibSchema &&) =
delete;
383 static PhotoCalibSchema
const &get() {
384 static PhotoCalibSchema
const instance;
392 "calibrationMean",
"mean calibration on this PhotoCalib's domain",
"count")),
394 schema.addField<double>(
"calibrationErr",
"1-sigma error on calibrationMean",
"count")),
395 isConstant(schema.addField<table::Flag>(
"isConstant",
"Is this spatially-constant?")),
396 field(schema.addField<
int>(
"field",
"archive ID of the BoundedField object")),
397 version(schema.addField<
int>(
"version",
"version of this PhotoCalib")) {}
400class PhotoCalibFactory :
public table::io::PersistableFactory {
403 read(InputArchive
const &archive, CatalogVector
const &catalogs)
const override {
404 table::BaseRecord
const &record = catalogs.front().front();
405 PhotoCalibSchema
const &
keys = PhotoCalibSchema::get();
406 int version = getVersion(record);
408 throw(pex::exceptions::RuntimeError(
"Unsupported version (version 0 was defined in maggies): " +
411 return std::make_shared<PhotoCalib>(record.get(
keys.calibrationMean), record.get(
keys.calibrationErr),
412 archive.get<afw::math::BoundedField>(record.get(
keys.field)),
413 record.get(
keys.isConstant));
416 PhotoCalibFactory(
std::string const &name) :
afw::table::io::PersistableFactory(name) {}
419 int getVersion(table::BaseRecord
const &record)
const {
423 auto versionKey = record.getSchema().
find<
int>(versionName);
424 version = record.get(versionKey.key);
425 }
catch (
const pex::exceptions::NotFoundError &) {
433std::string getPhotoCalibPersistenceName() {
return "PhotoCalib"; }
435PhotoCalibFactory registration(getPhotoCalibPersistenceName());
444int const CALIB_TABLE_CURRENT_VERSION = 2;
456 CalibKeys(
const CalibKeys &) =
delete;
457 CalibKeys &operator=(
const CalibKeys &) =
delete;
460 CalibKeys(CalibKeys &&) =
delete;
461 CalibKeys &operator=(CalibKeys &&) =
delete;
463 CalibKeys(
int tableVersion = CALIB_TABLE_CURRENT_VERSION)
465 if (tableVersion == 1) {
468 "midtime",
"middle of the time of the exposure relative to Unix epoch",
"ns");
469 expTime = schema.addField<
double>(EXPTIME_FIELD_NAME,
"exposure time",
"s");
471 fluxMag0 = schema.addField<
double>(
"fluxmag0",
"flux of a zero-magnitude object",
"count");
472 fluxMag0Err = schema.addField<
double>(
"fluxmag0.err",
"1-sigma error on fluxmag0",
"count");
476class CalibFactory :
public table::io::PersistableFactory {
479 CatalogVector
const &catalogs)
const override {
482 int tableVersion = 1;
484 catalogs.front().getSchema().find<
double>(EXPTIME_FIELD_NAME);
485 }
catch (pex::exceptions::NotFoundError
const&) {
486 tableVersion = CALIB_TABLE_CURRENT_VERSION;
489 CalibKeys
const keys{tableVersion};
493 table::BaseRecord
const &record = catalogs.front().front();
501 explicit CalibFactory(
std::string const &name) : table::io::PersistableFactory(name) {}
504std::string getCalibPersistenceName() {
return "Calib"; }
506CalibFactory calibRegistration(getCalibPersistenceName());
510std::string PhotoCalib::getPersistenceName()
const {
return getPhotoCalibPersistenceName(); }
513 PhotoCalibSchema
const &keys = PhotoCalibSchema::get();
515 auto record = catalog.
addNew();
516 record->set(keys.calibrationMean, _calibrationMean);
517 record->set(keys.calibrationErr, _calibrationErr);
518 record->set(keys.isConstant, _isConstant);
519 record->set(keys.field, handle.
put(_calibration));
520 record->set(keys.version, SERIALIZATION_VERSION);
528 return _calibrationMean;
530 return _calibration->evaluate(point);
533ndarray::Array<double, 1> PhotoCalib::evaluateArray(ndarray::Array<double, 1>
const &xx,
534 ndarray::Array<double, 1>
const &yy)
const {
536 ndarray::Array<double, 1>
result = ndarray::allocate(ndarray::makeVector(xx.size()));
537 result.deep() = _calibrationMean;
540 return _calibration->evaluate(xx, yy);
545 ndarray::Array<double, 1> xx = ndarray::allocate(ndarray::makeVector(sourceCatalog.size()));
546 ndarray::Array<double, 1> yy = ndarray::allocate(ndarray::makeVector(sourceCatalog.size()));
548 for (
auto const &rec : sourceCatalog) {
549 auto point = rec.getCentroid();
550 xx[i] = point.getX();
551 yy[i] = point.getY();
554 return evaluateArray(xx, yy);
559 ndarray::Array<double, 2, 2>
result)
const {
560 auto instFluxKey = sourceCatalog.getSchema().find<
double>(instFluxField +
"_instFlux").key;
561 auto instFluxErrKey = sourceCatalog.getSchema().find<
double>(instFluxField +
"_instFluxErr").key;
563 auto calibration = evaluateCatalog(sourceCatalog);
566 for (
auto const &rec : sourceCatalog) {
567 double instFlux = rec.get(instFluxKey);
568 double instFluxErr = rec.get(instFluxErrKey);
569 double nanojansky = toNanojansky(instFlux, calibration[i]);
570 (*iter)[0] = nanojansky;
571 (*iter)[1] = toNanojanskyErr(instFlux, instFluxErr, calibration[i], _calibrationErr, nanojansky);
579 ndarray::Array<double, 2, 2>
result)
const {
580 auto instFluxKey = sourceCatalog.getSchema().find<
double>(instFluxField +
"_instFlux").key;
581 auto instFluxErrKey = sourceCatalog.getSchema().find<
double>(instFluxField +
"_instFluxErr").key;
583 auto calibration = evaluateCatalog(sourceCatalog);
586 for (
auto const &rec : sourceCatalog) {
587 double instFlux = rec.get(instFluxKey);
588 double instFluxErr = rec.get(instFluxErrKey);
589 (*iter)[0] = toMagnitude(instFlux, calibration[i]);
590 (*iter)[1] = toMagnitudeErr(instFlux, instFluxErr, calibration[i], _calibrationErr);
597 auto key =
"FLUXMAG0";
598 if (metadata.
exists(key)) {
602 double instFluxMag0Err = 0.0;
604 if (metadata.
exists(key)) {
608 return makePhotoCalibFromCalibZeroPoint(instFluxMag0, instFluxMag0Err);
#define LSST_EXCEPT(type,...)
Create an exception with a given type.
table::Key< double > calibrationMean
table::Key< std::int64_t > midTime
table::Key< double > calibrationErr
table::Key< double > fluxMag0
table::Key< double > expTime
table::Key< table::Flag > isConstant
table::Key< double > fluxMag0Err
Implementation of the Photometric Calibration class.
#define LSST_ARCHIVE_ASSERT(EXPR)
An assertion macro used to validate the structure of an InputArchive.
A class to manipulate images, masks, and variance as a single object.
The photometric calibration of an exposure.
Tag types used to declare specialized field types.
Field< T >::Value get(Key< T > const &key) const
Return the value of a field for the given key.
Schema getSchema() const
Return the Schema that holds this record's fields and keys.
std::shared_ptr< RecordT > addNew()
Create a new record, add it to the end of the catalog, and return a pointer to it.
SchemaItem< T > find(std::string const &name) const
Find a SchemaItem in the Schema by name.
A mapping between the keys of two Schemas, used to copy data between them.
Record class that contains measurements made on a single exposure.
CentroidSlotDefinition::MeasValue getCentroid() const
Get the value of the Centroid slot measurement.
An object passed to Persistable::write to allow it to persist itself.
void saveCatalog(BaseCatalog const &catalog)
Save a catalog in the archive.
BaseCatalog makeCatalog(Schema const &schema)
Return a new, empty catalog with the given schema.
int put(Persistable const *obj, bool permissive=false)
Save an object to the archive and return a unique ID that can be used to retrieve it from an InputArc...
static std::shared_ptr< T > dynamicCast(std::shared_ptr< Persistable > const &ptr)
Dynamically cast a shared_ptr.
Interface supporting iteration over heterogenous containers.
Class for storing generic metadata.
virtual void remove(std::string const &name)
Remove all values for a property name (possibly hierarchical).
bool exists(std::string const &name) const
Determine if a name (possibly hierarchical) exists.
double getAsDouble(std::string const &name) const
Get the last value for any arithmetic property name (possibly hierarchical).
A coordinate class intended to represent absolute positions.
Reports errors in the logical structure of the program.
Reports attempts to access elements using an invalid key.
T emplace_back(T... args)
std::shared_ptr< PhotoCalib > makePhotoCalibFromMetadata(daf::base::PropertySet &metadata, bool strip=false)
Construct a PhotoCalib from FITS FLUXMAG0/FLUXMAG0ERR keywords.
SortedCatalogT< SourceRecord > SourceCatalog
const double referenceFlux
The Oke & Gunn (1983) AB magnitude reference flux, in nJy (often approximated as 3631....
double ABMagnitudeToNanojansky(double magnitude)
Convert an AB magnitude to a flux in nanojansky.
double nanojanskyToABMagnitude(double flux)
Convert a flux in nanojansky to AB magnitude.
T setprecision(T... args)
Utilities for converting between flux and magnitude in C++.
std::shared_ptr< table::io::Persistable > read(table::io::InputArchive const &archive, table::io::CatalogVector const &catalogs) const override