LSST Applications 27.0.0,g0265f82a02+469cd937ee,g02d81e74bb+21ad69e7e1,g1470d8bcf6+cbe83ee85a,g2079a07aa2+e67c6346a6,g212a7c68fe+04a9158687,g2305ad1205+94392ce272,g295015adf3+81dd352a9d,g2bbee38e9b+469cd937ee,g337abbeb29+469cd937ee,g3939d97d7f+72a9f7b576,g487adcacf7+71499e7cba,g50ff169b8f+5929b3527e,g52b1c1532d+a6fc98d2e7,g591dd9f2cf+df404f777f,g5a732f18d5+be83d3ecdb,g64a986408d+21ad69e7e1,g858d7b2824+21ad69e7e1,g8a8a8dda67+a6fc98d2e7,g99cad8db69+f62e5b0af5,g9ddcbc5298+d4bad12328,ga1e77700b3+9c366c4306,ga8c6da7877+71e4819109,gb0e22166c9+25ba2f69a1,gb6a65358fc+469cd937ee,gbb8dafda3b+69d3c0e320,gc07e1c2157+a98bf949bb,gc120e1dc64+615ec43309,gc28159a63d+469cd937ee,gcf0d15dbbd+72a9f7b576,gdaeeff99f8+a38ce5ea23,ge6526c86ff+3a7c1ac5f1,ge79ae78c31+469cd937ee,gee10cc3b42+a6fc98d2e7,gf1cff7945b+21ad69e7e1,gfbcc870c63+9a11dc8c8f
LSST Data Management Base Package
Loading...
Searching...
No Matches
PolynomialFunction2d.cc
Go to the documentation of this file.
1// -*- LSST-C++ -*-
2/*
3 * Developed for the LSST Data Management System.
4 * This product includes software developed by the LSST Project
5 * (https://www.lsst.org).
6 * See the COPYRIGHT file at the top-level directory of this distribution
7 * for details of code ownership.
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <https://www.gnu.org/licenses/>.
21 */
22
23#include <vector>
24
28
29
30namespace lsst { namespace geom { namespace polynomials {
31
32namespace {
33
34Eigen::VectorXd computePowers(double x, int n) {
35 Eigen::VectorXd r(n + 1);
36 r[0] = 1.0;
37 for (int i = 1; i <= n; ++i) {
38 r[i] = r[i - 1]*x;
39 }
40 return r;
41}
42
43} // anonymous
44
45
46template <PackingOrder packing>
48 auto const & basis = f.getBasis();
50 std::size_t const n = basis.getOrder();
51 auto rPow = computePowers(basis.getScaling().getX().getScale(), n);
52 auto sPow = computePowers(basis.getScaling().getY().getScale(), n);
53 auto uPow = computePowers(basis.getScaling().getX().getShift(), n);
54 auto vPow = computePowers(basis.getScaling().getY().getShift(), n);
55 BinomialMatrix binomial(basis.getNested().getOrder());
56 for (auto const & i : basis.getIndices()) {
57 for (std::size_t j = 0; j <= i.nx; ++j) {
58 double tmp = binomial(i.nx, j)*uPow[j] *
59 f[i.flat]*rPow[i.nx]*sPow[i.ny];
60 for (std::size_t k = 0; k <= i.ny; ++k) {
61 sums[basis.index(i.nx - j, i.ny - k)] +=
62 binomial(i.ny, k)*vPow[k]*tmp;
63 }
64 }
65 }
66 Eigen::VectorXd result = Eigen::VectorXd::Zero(basis.size());
67 for (std::size_t i = 0; i < basis.size(); ++i) {
68 result[i] = static_cast<double>(sums[i]);
69 }
70 return makeFunction2d(basis.getNested(), result);
71}
72
75);
78);
79
80}}} // namespace lsst::geom::polynomials
py::object result
Definition _schema.cc:429
A class that computes binomial coefficients up to a certain power.
A 2-d function defined by a series expansion and its coefficients.
Definition Function2d.h:42
Basis const & getBasis() const
Return the associated Basis2d object.
Definition Function2d.h:101
Function2d< Basis > makeFunction2d(Basis const &basis, Eigen::VectorXd const &coefficients)
Create a Function2d of the appropriate type from a Basis2d and an Eigen object containing coefficient...
Definition Function2d.h:155
PolynomialFunction1d simplified(ScaledPolynomialFunction1d const &f)
Calculate the standard polynomial function that is equivalent to a scaled standard polynomial functio...
void computePowers(Eigen::VectorXd &r, double x)
Fill an array with integer powers of x, so .
table::Key< table::Array< double > > basis
Definition PsfexPsf.cc:361