LSST Applications 27.0.0,g0265f82a02+469cd937ee,g02d81e74bb+21ad69e7e1,g1470d8bcf6+cbe83ee85a,g2079a07aa2+e67c6346a6,g212a7c68fe+04a9158687,g2305ad1205+94392ce272,g295015adf3+81dd352a9d,g2bbee38e9b+469cd937ee,g337abbeb29+469cd937ee,g3939d97d7f+72a9f7b576,g487adcacf7+71499e7cba,g50ff169b8f+5929b3527e,g52b1c1532d+a6fc98d2e7,g591dd9f2cf+df404f777f,g5a732f18d5+be83d3ecdb,g64a986408d+21ad69e7e1,g858d7b2824+21ad69e7e1,g8a8a8dda67+a6fc98d2e7,g99cad8db69+f62e5b0af5,g9ddcbc5298+d4bad12328,ga1e77700b3+9c366c4306,ga8c6da7877+71e4819109,gb0e22166c9+25ba2f69a1,gb6a65358fc+469cd937ee,gbb8dafda3b+69d3c0e320,gc07e1c2157+a98bf949bb,gc120e1dc64+615ec43309,gc28159a63d+469cd937ee,gcf0d15dbbd+72a9f7b576,gdaeeff99f8+a38ce5ea23,ge6526c86ff+3a7c1ac5f1,ge79ae78c31+469cd937ee,gee10cc3b42+a6fc98d2e7,gf1cff7945b+21ad69e7e1,gfbcc870c63+9a11dc8c8f
LSST Data Management Base Package
Loading...
Searching...
No Matches
calibrateImage.py
Go to the documentation of this file.
1# This file is part of pipe_tasks.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
21
22import collections.abc
23
24import numpy as np
25
26import lsst.afw.table as afwTable
27import lsst.afw.image as afwImage
32import lsst.meas.base
35import lsst.meas.extensions.shapeHSM
36import lsst.pex.config as pexConfig
37import lsst.pipe.base as pipeBase
38from lsst.pipe.base import connectionTypes
39from lsst.utils.timer import timeMethod
40
41from . import measurePsf, repair, photoCal, computeExposureSummaryStats, snapCombine
42
43
44class CalibrateImageConnections(pipeBase.PipelineTaskConnections,
45 dimensions=("instrument", "visit", "detector")):
46
47 astrometry_ref_cat = connectionTypes.PrerequisiteInput(
48 doc="Reference catalog to use for astrometric calibration.",
49 name="gaia_dr3_20230707",
50 storageClass="SimpleCatalog",
51 dimensions=("skypix",),
52 deferLoad=True,
53 multiple=True,
54 )
55 photometry_ref_cat = connectionTypes.PrerequisiteInput(
56 doc="Reference catalog to use for photometric calibration.",
57 name="ps1_pv3_3pi_20170110",
58 storageClass="SimpleCatalog",
59 dimensions=("skypix",),
60 deferLoad=True,
61 multiple=True
62 )
63
64 exposures = connectionTypes.Input(
65 doc="Exposure (or two snaps) to be calibrated, and detected and measured on.",
66 name="postISRCCD",
67 storageClass="Exposure",
68 multiple=True, # to handle 1 exposure or 2 snaps
69 dimensions=["instrument", "exposure", "detector"],
70 )
71
72 # outputs
73 initial_stars_schema = connectionTypes.InitOutput(
74 doc="Schema of the output initial stars catalog.",
75 name="initial_stars_schema",
76 storageClass="SourceCatalog",
77 )
78
79 # TODO DM-38732: We want some kind of flag on Exposures/Catalogs to make
80 # it obvious which components had failed to be computed/persisted.
81 exposure = connectionTypes.Output(
82 doc="Photometrically calibrated exposure with fitted calibrations and summary statistics.",
83 name="initial_pvi",
84 storageClass="ExposureF",
85 dimensions=("instrument", "visit", "detector"),
86 )
87 stars = connectionTypes.Output(
88 doc="Catalog of unresolved sources detected on the calibrated exposure.",
89 name="initial_stars_detector",
90 storageClass="ArrowAstropy",
91 dimensions=["instrument", "visit", "detector"],
92 )
93 stars_footprints = connectionTypes.Output(
94 doc="Catalog of unresolved sources detected on the calibrated exposure; "
95 "includes source footprints.",
96 name="initial_stars_footprints_detector",
97 storageClass="SourceCatalog",
98 dimensions=["instrument", "visit", "detector"],
99 )
100 applied_photo_calib = connectionTypes.Output(
101 doc="Photometric calibration that was applied to exposure.",
102 name="initial_photoCalib_detector",
103 storageClass="PhotoCalib",
104 dimensions=("instrument", "visit", "detector"),
105 )
106 background = connectionTypes.Output(
107 doc="Background models estimated during calibration task.",
108 name="initial_pvi_background",
109 storageClass="Background",
110 dimensions=("instrument", "visit", "detector"),
111 )
112
113 # Optional outputs
114 psf_stars_footprints = connectionTypes.Output(
115 doc="Catalog of bright unresolved sources detected on the exposure used for PSF determination; "
116 "includes source footprints.",
117 name="initial_psf_stars_footprints_detector",
118 storageClass="SourceCatalog",
119 dimensions=["instrument", "visit", "detector"],
120 )
121 psf_stars = connectionTypes.Output(
122 doc="Catalog of bright unresolved sources detected on the exposure used for PSF determination.",
123 name="initial_psf_stars_detector",
124 storageClass="ArrowAstropy",
125 dimensions=["instrument", "visit", "detector"],
126 )
127 astrometry_matches = connectionTypes.Output(
128 doc="Source to reference catalog matches from the astrometry solver.",
129 name="initial_astrometry_match_detector",
130 storageClass="Catalog",
131 dimensions=("instrument", "visit", "detector"),
132 )
133 photometry_matches = connectionTypes.Output(
134 doc="Source to reference catalog matches from the photometry solver.",
135 name="initial_photometry_match_detector",
136 storageClass="Catalog",
137 dimensions=("instrument", "visit", "detector"),
138 )
139
140 def __init__(self, *, config=None):
141 super().__init__(config=config)
142 if not config.optional_outputs:
143 del self.psf_stars
144 del self.psf_stars_footprints
145 del self.astrometry_matches
146 del self.photometry_matches
147
148
149class CalibrateImageConfig(pipeBase.PipelineTaskConfig, pipelineConnections=CalibrateImageConnections):
150 optional_outputs = pexConfig.ListField(
151 doc="Which optional outputs to save (as their connection name)?",
152 dtype=str,
153 # TODO: note somewhere to disable this for benchmarking, but should
154 # we always have it on for production runs?
155 default=["psf_stars", "psf_stars_footprints", "astrometry_matches", "photometry_matches"],
156 optional=True
157 )
158
159 # To generate catalog ids consistently across subtasks.
160 id_generator = lsst.meas.base.DetectorVisitIdGeneratorConfig.make_field()
161
162 snap_combine = pexConfig.ConfigurableField(
164 doc="Task to combine two snaps to make one exposure.",
165 )
166
167 # subtasks used during psf characterization
168 install_simple_psf = pexConfig.ConfigurableField(
170 doc="Task to install a simple PSF model into the input exposure to use "
171 "when detecting bright sources for PSF estimation.",
172 )
173 psf_repair = pexConfig.ConfigurableField(
174 target=repair.RepairTask,
175 doc="Task to repair cosmic rays on the exposure before PSF determination.",
176 )
177 psf_subtract_background = pexConfig.ConfigurableField(
179 doc="Task to perform intial background subtraction, before first detection pass.",
180 )
181 psf_detection = pexConfig.ConfigurableField(
183 doc="Task to detect sources for PSF determination."
184 )
185 psf_source_measurement = pexConfig.ConfigurableField(
187 doc="Task to measure sources to be used for psf estimation."
188 )
189 psf_measure_psf = pexConfig.ConfigurableField(
191 doc="Task to measure the psf on bright sources."
192 )
193
194 # TODO DM-39203: we can remove aperture correction from this task once we are
195 # using the shape-based star/galaxy code.
196 measure_aperture_correction = pexConfig.ConfigurableField(
198 doc="Task to compute the aperture correction from the bright stars."
199 )
200
201 # subtasks used during star measurement
202 star_detection = pexConfig.ConfigurableField(
204 doc="Task to detect stars to return in the output catalog."
205 )
206 star_sky_sources = pexConfig.ConfigurableField(
208 doc="Task to generate sky sources ('empty' regions where there are no detections).",
209 )
210 star_deblend = pexConfig.ConfigurableField(
212 doc="Split blended sources into their components."
213 )
214 star_measurement = pexConfig.ConfigurableField(
216 doc="Task to measure stars to return in the output catalog."
217 )
218 star_apply_aperture_correction = pexConfig.ConfigurableField(
220 doc="Task to apply aperture corrections to the selected stars."
221 )
222 star_catalog_calculation = pexConfig.ConfigurableField(
224 doc="Task to compute extendedness values on the star catalog, "
225 "for the star selector to remove extended sources."
226 )
227 star_set_primary_flags = pexConfig.ConfigurableField(
229 doc="Task to add isPrimary to the catalog."
230 )
231 star_selector = lsst.meas.algorithms.sourceSelectorRegistry.makeField(
232 default="science",
233 doc="Task to select isolated stars to use for calibration."
234 )
235
236 # final calibrations and statistics
237 astrometry = pexConfig.ConfigurableField(
239 doc="Task to perform astrometric calibration to fit a WCS.",
240 )
241 astrometry_ref_loader = pexConfig.ConfigField(
243 doc="Configuration of reference object loader for astrometric fit.",
244 )
245 photometry = pexConfig.ConfigurableField(
247 doc="Task to perform photometric calibration to fit a PhotoCalib.",
248 )
249 photometry_ref_loader = pexConfig.ConfigField(
251 doc="Configuration of reference object loader for photometric fit.",
252 )
253
254 compute_summary_stats = pexConfig.ConfigurableField(
256 doc="Task to to compute summary statistics on the calibrated exposure."
257 )
258
259 def setDefaults(self):
260 super().setDefaults()
261
262 # Use a very broad PSF here, to throughly reject CRs.
263 # TODO investigation: a large initial psf guess may make stars look
264 # like CRs for very good seeing images.
265 self.install_simple_psf.fwhm = 4
266
267 # S/N>=50 sources for PSF determination, but detection to S/N=5.
268 self.psf_detection.thresholdValue = 5.0
269 self.psf_detection.includeThresholdMultiplier = 10.0
270 # TODO investigation: Probably want False here, but that may require
271 # tweaking the background spatial scale, to make it small enough to
272 # prevent extra peaks in the wings of bright objects.
273 self.psf_detection.doTempLocalBackground = False
274 # NOTE: we do want reEstimateBackground=True in psf_detection, so that
275 # each measurement step is done with the best background available.
276
277 # Minimal measurement plugins for PSF determination.
278 # TODO DM-39203: We can drop GaussianFlux and PsfFlux, if we use
279 # shapeHSM/moments for star/galaxy separation.
280 # TODO DM-39203: we can remove aperture correction from this task once
281 # we are using the shape-based star/galaxy code.
282 self.psf_source_measurement.plugins = ["base_PixelFlags",
283 "base_SdssCentroid",
284 "ext_shapeHSM_HsmSourceMoments",
285 "base_CircularApertureFlux",
286 "base_GaussianFlux",
287 "base_PsfFlux",
288 "base_ClassificationSizeExtendedness",
289 ]
290 self.psf_source_measurement.slots.shape = "ext_shapeHSM_HsmSourceMoments"
291 # Only measure apertures we need for PSF measurement.
292 self.psf_source_measurement.plugins["base_CircularApertureFlux"].radii = [12.0]
293 # TODO DM-40843: Remove this line once this is the psfex default.
294 self.psf_measure_psf.psfDeterminer["psfex"].photometricFluxField = \
295 "base_CircularApertureFlux_12_0_instFlux"
296
297 # No extendeness information available: we need the aperture
298 # corrections to determine that.
299 self.measure_aperture_correction.sourceSelector["science"].doUnresolved = False
300 self.measure_aperture_correction.sourceSelector["science"].flags.good = ["calib_psf_used"]
301 self.measure_aperture_correction.sourceSelector["science"].flags.bad = []
302
303 # Detection for good S/N for astrometry/photometry and other
304 # downstream tasks; detection mask to S/N>=5, but S/N>=10 peaks.
305 self.star_detection.thresholdValue = 5.0
306 self.star_detection.includeThresholdMultiplier = 2.0
307 self.star_measurement.plugins = ["base_PixelFlags",
308 "base_SdssCentroid",
309 "ext_shapeHSM_HsmSourceMoments",
310 'ext_shapeHSM_HsmPsfMoments',
311 "base_GaussianFlux",
312 "base_PsfFlux",
313 "base_CircularApertureFlux",
314 "base_ClassificationSizeExtendedness",
315 ]
316 self.star_measurement.slots.psfShape = "ext_shapeHSM_HsmPsfMoments"
317 self.star_measurement.slots.shape = "ext_shapeHSM_HsmSourceMoments"
318 # Only measure the apertures we need for star selection.
319 self.star_measurement.plugins["base_CircularApertureFlux"].radii = [12.0]
320
321 # Select isolated stars with reliable measurements and no bad flags.
322 self.star_selector["science"].doFlags = True
323 self.star_selector["science"].doUnresolved = True
324 self.star_selector["science"].doSignalToNoise = True
325 self.star_selector["science"].doIsolated = True
326 self.star_selector["science"].signalToNoise.minimum = 10.0
327 # Keep sky sources in the output catalog, even though they aren't
328 # wanted for calibration.
329 self.star_selector["science"].doSkySources = True
330
331 # Use the affine WCS fitter (assumes we have a good camera geometry).
332 self.astrometry.wcsFitter.retarget(lsst.meas.astrom.FitAffineWcsTask)
333 # phot_g_mean is the primary Gaia band for all input bands.
334 self.astrometry_ref_loader.anyFilterMapsToThis = "phot_g_mean"
335
336 # Only reject sky sources; we already selected good stars.
337 self.astrometry.sourceSelector["science"].doFlags = True
338 self.astrometry.sourceSelector["science"].flags.bad = ["sky_source"]
339 self.photometry.match.sourceSelection.doFlags = True
340 self.photometry.match.sourceSelection.flags.bad = ["sky_source"]
341
342 # All sources should be good for PSF summary statistics.
343 # TODO: These should both be changed to calib_psf_used with DM-41640.
344 self.compute_summary_stats.starSelection = "calib_photometry_used"
345 self.compute_summary_stats.starSelector.flags.good = ["calib_photometry_used"]
346
347
348class CalibrateImageTask(pipeBase.PipelineTask):
349 """Compute the PSF, aperture corrections, astrometric and photometric
350 calibrations, and summary statistics for a single science exposure, and
351 produce a catalog of brighter stars that were used to calibrate it.
352
353 Parameters
354 ----------
355 initial_stars_schema : `lsst.afw.table.Schema`
356 Schema of the initial_stars output catalog.
357 """
358 _DefaultName = "calibrateImage"
359 ConfigClass = CalibrateImageConfig
360
361 def __init__(self, initial_stars_schema=None, **kwargs):
362 super().__init__(**kwargs)
363
364 self.makeSubtask("snap_combine")
365
366 # PSF determination subtasks
367 self.makeSubtask("install_simple_psf")
368 self.makeSubtask("psf_repair")
369 self.makeSubtask("psf_subtract_background")
370 self.psf_schema = afwTable.SourceTable.makeMinimalSchema()
371 self.makeSubtask("psf_detection", schema=self.psf_schema)
372 self.makeSubtask("psf_source_measurement", schema=self.psf_schema)
373 self.makeSubtask("psf_measure_psf", schema=self.psf_schema)
374
375 self.makeSubtask("measure_aperture_correction", schema=self.psf_schema)
376
377 # star measurement subtasks
378 if initial_stars_schema is None:
379 initial_stars_schema = afwTable.SourceTable.makeMinimalSchema()
380
381 # These fields let us track which sources were used for psf and
382 # aperture correction calculations.
383 self.psf_fields = ("calib_psf_candidate", "calib_psf_used", "calib_psf_reserved",
384 # TODO DM-39203: these can be removed once apcorr is gone.
385 "apcorr_slot_CalibFlux_used", "apcorr_base_GaussianFlux_used",
386 "apcorr_base_PsfFlux_used")
387 for field in self.psf_fields:
388 item = self.psf_schema.find(field)
389 initial_stars_schema.addField(item.getField())
390
391 afwTable.CoordKey.addErrorFields(initial_stars_schema)
392 self.makeSubtask("star_detection", schema=initial_stars_schema)
393 self.makeSubtask("star_sky_sources", schema=initial_stars_schema)
394 self.makeSubtask("star_deblend", schema=initial_stars_schema)
395 self.makeSubtask("star_measurement", schema=initial_stars_schema)
396 self.makeSubtask("star_apply_aperture_correction", schema=initial_stars_schema)
397 self.makeSubtask("star_catalog_calculation", schema=initial_stars_schema)
398 self.makeSubtask("star_set_primary_flags", schema=initial_stars_schema, isSingleFrame=True)
399 self.makeSubtask("star_selector")
400
401 self.makeSubtask("astrometry", schema=initial_stars_schema)
402 self.makeSubtask("photometry", schema=initial_stars_schema)
403
404 self.makeSubtask("compute_summary_stats")
405
406 # For the butler to persist it.
407 self.initial_stars_schema = afwTable.SourceCatalog(initial_stars_schema)
408
409 def runQuantum(self, butlerQC, inputRefs, outputRefs):
410 inputs = butlerQC.get(inputRefs)
411 exposures = inputs.pop("exposures")
412
413 id_generator = self.config.id_generator.apply(butlerQC.quantum.dataId)
414
416 dataIds=[ref.datasetRef.dataId for ref in inputRefs.astrometry_ref_cat],
417 refCats=inputs.pop("astrometry_ref_cat"),
418 name=self.config.connections.astrometry_ref_cat,
419 config=self.config.astrometry_ref_loader, log=self.log)
420 self.astrometry.setRefObjLoader(astrometry_loader)
421
423 dataIds=[ref.datasetRef.dataId for ref in inputRefs.photometry_ref_cat],
424 refCats=inputs.pop("photometry_ref_cat"),
425 name=self.config.connections.photometry_ref_cat,
426 config=self.config.photometry_ref_loader, log=self.log)
427 self.photometry.match.setRefObjLoader(photometry_loader)
428
429 # This should not happen with a properly configured execution context.
430 assert not inputs, "runQuantum got more inputs than expected"
431
432 # Specify the fields that `annotate` needs below, to ensure they
433 # exist, even as None.
434 result = pipeBase.Struct(exposure=None,
435 stars_footprints=None,
436 psf_stars_footprints=None,
437 )
438 try:
439 self.run(exposures=exposures, result=result, id_generator=id_generator)
440 except pipeBase.AlgorithmError as e:
441 error = pipeBase.AnnotatedPartialOutputsError.annotate(
442 e,
443 self,
444 result.exposure,
445 result.psf_stars_footprints,
446 result.stars_footprints,
447 log=self.log
448 )
449 butlerQC.put(result, outputRefs)
450 raise error from e
451
452 butlerQC.put(result, outputRefs)
453
454 @timeMethod
455 def run(self, *, exposures, id_generator=None, result=None):
456 """Find stars and perform psf measurement, then do a deeper detection
457 and measurement and calibrate astrometry and photometry from that.
458
459 Parameters
460 ----------
461 exposures : `lsst.afw.image.Exposure` or `list` [`lsst.afw.image.Exposure`]
462 Post-ISR exposure(s), with an initial WCS, VisitInfo, and Filter.
463 Modified in-place during processing if only one is passed.
464 If two exposures are passed, treat them as snaps and combine
465 before doing further processing.
466 id_generator : `lsst.meas.base.IdGenerator`, optional
467 Object that generates source IDs and provides random seeds.
468 result : `lsst.pipe.base.Struct`, optional
469 Result struct that is modified to allow saving of partial outputs
470 for some failure conditions. If the task completes successfully,
471 this is also returned.
472
473 Returns
474 -------
475 result : `lsst.pipe.base.Struct`
476 Results as a struct with attributes:
477
478 ``exposure``
479 Calibrated exposure, with pixels in nJy units.
480 (`lsst.afw.image.Exposure`)
481 ``stars``
482 Stars that were used to calibrate the exposure, with
483 calibrated fluxes and magnitudes.
484 (`astropy.table.Table`)
485 ``stars_footprints``
486 Footprints of stars that were used to calibrate the exposure.
487 (`lsst.afw.table.SourceCatalog`)
488 ``psf_stars``
489 Stars that were used to determine the image PSF.
490 (`astropy.table.Table`)
491 ``psf_stars_footprints``
492 Footprints of stars that were used to determine the image PSF.
493 (`lsst.afw.table.SourceCatalog`)
494 ``background``
495 Background that was fit to the exposure when detecting
496 ``stars``. (`lsst.afw.math.BackgroundList`)
497 ``applied_photo_calib``
498 Photometric calibration that was fit to the star catalog and
499 applied to the exposure. (`lsst.afw.image.PhotoCalib`)
500 ``astrometry_matches``
501 Reference catalog stars matches used in the astrometric fit.
502 (`list` [`lsst.afw.table.ReferenceMatch`] or `lsst.afw.table.BaseCatalog`)
503 ``photometry_matches``
504 Reference catalog stars matches used in the photometric fit.
505 (`list` [`lsst.afw.table.ReferenceMatch`] or `lsst.afw.table.BaseCatalog`)
506 """
507 if result is None:
508 result = pipeBase.Struct()
509 if id_generator is None:
510 id_generator = lsst.meas.base.IdGenerator()
511
512 result.exposure = self._handle_snaps(exposures)
513
514 # TODO remove on DM-43083: work around the fact that we don't want
515 # to run streak detection in this task in production.
516 result.exposure.mask.addMaskPlane("STREAK")
517
518 result.psf_stars_footprints, result.background, candidates = self._compute_psf(result.exposure,
519 id_generator)
520 result.psf_stars = result.psf_stars_footprints.asAstropy()
521
522 self._measure_aperture_correction(result.exposure, result.psf_stars)
523
524 result.stars_footprints = self._find_stars(result.exposure, result.background, id_generator)
525 self._match_psf_stars(result.psf_stars_footprints, result.stars_footprints)
526 result.stars = result.stars_footprints.asAstropy()
527
528 astrometry_matches, astrometry_meta = self._fit_astrometry(result.exposure, result.stars_footprints)
529 if self.config.optional_outputs:
530 result.astrometry_matches = lsst.meas.astrom.denormalizeMatches(astrometry_matches,
531 astrometry_meta)
532
533 result.stars_footprints, photometry_matches, \
534 photometry_meta, result.applied_photo_calib = self._fit_photometry(result.exposure,
535 result.stars_footprints)
536 # fit_photometry returns a new catalog, so we need a new astropy table view.
537 result.stars = result.stars_footprints.asAstropy()
538 if self.config.optional_outputs:
539 result.photometry_matches = lsst.meas.astrom.denormalizeMatches(photometry_matches,
540 photometry_meta)
541
542 self._summarize(result.exposure, result.stars_footprints, result.background)
543
544 return result
545
546 def _handle_snaps(self, exposure):
547 """Combine two snaps into one exposure, or return a single exposure.
548
549 Parameters
550 ----------
551 exposure : `lsst.afw.image.Exposure` or `list` [`lsst.afw.image.Exposure]`
552 One or two exposures to combine as snaps.
553
554 Returns
555 -------
556 exposure : `lsst.afw.image.Exposure`
557 A single exposure to continue processing.
558
559 Raises
560 ------
561 RuntimeError
562 Raised if input does not contain either 1 or 2 exposures.
563 """
564 if isinstance(exposure, lsst.afw.image.Exposure):
565 return exposure
566
567 if isinstance(exposure, collections.abc.Sequence):
568 match len(exposure):
569 case 1:
570 return exposure[0]
571 case 2:
572 return self.snap_combine.run(exposure[0], exposure[1]).exposure
573 case n:
574 raise RuntimeError(f"Can only process 1 or 2 snaps, not {n}.")
575
576 def _compute_psf(self, exposure, id_generator):
577 """Find bright sources detected on an exposure and fit a PSF model to
578 them, repairing likely cosmic rays before detection.
579
580 Repair, detect, measure, and compute PSF twice, to ensure the PSF
581 model does not include contributions from cosmic rays.
582
583 Parameters
584 ----------
585 exposure : `lsst.afw.image.Exposure`
586 Exposure to detect and measure bright stars on.
587 id_generator : `lsst.meas.base.IdGenerator`, optional
588 Object that generates source IDs and provides random seeds.
589
590 Returns
591 -------
592 sources : `lsst.afw.table.SourceCatalog`
593 Catalog of detected bright sources.
594 background : `lsst.afw.math.BackgroundList`
595 Background that was fit to the exposure during detection.
596 cell_set : `lsst.afw.math.SpatialCellSet`
597 PSF candidates returned by the psf determiner.
598 """
599 def log_psf(msg):
600 """Log the parameters of the psf and background, with a prepended
601 message.
602 """
603 position = exposure.psf.getAveragePosition()
604 sigma = exposure.psf.computeShape(position).getDeterminantRadius()
605 dimensions = exposure.psf.computeImage(position).getDimensions()
606 median_background = np.median(background.getImage().array)
607 self.log.info("%s sigma=%0.4f, dimensions=%s; median background=%0.2f",
608 msg, sigma, dimensions, median_background)
609
610 self.log.info("First pass detection with Guassian PSF FWHM=%s pixels",
611 self.config.install_simple_psf.fwhm)
612 self.install_simple_psf.run(exposure=exposure)
613
614 background = self.psf_subtract_background.run(exposure=exposure).background
615 log_psf("Initial PSF:")
616 self.psf_repair.run(exposure=exposure, keepCRs=True)
617
618 table = afwTable.SourceTable.make(self.psf_schema, id_generator.make_table_id_factory())
619 # Re-estimate the background during this detection step, so that
620 # measurement uses the most accurate background-subtraction.
621 detections = self.psf_detection.run(table=table, exposure=exposure, background=background)
622 self.psf_source_measurement.run(detections.sources, exposure)
623 psf_result = self.psf_measure_psf.run(exposure=exposure, sources=detections.sources)
624 # Replace the initial PSF with something simpler for the second
625 # repair/detect/measure/measure_psf step: this can help it converge.
626 self.install_simple_psf.run(exposure=exposure)
627
628 log_psf("Rerunning with simple PSF:")
629 # TODO investigation: Should we only re-run repair here, to use the
630 # new PSF? Maybe we *do* need to re-run measurement with PsfFlux, to
631 # use the fitted PSF?
632 # TODO investigation: do we need a separate measurement task here
633 # for the post-psf_measure_psf step, since we only want to do PsfFlux
634 # and GaussianFlux *after* we have a PSF? Maybe that's not relevant
635 # once DM-39203 is merged?
636 self.psf_repair.run(exposure=exposure, keepCRs=True)
637 # Re-estimate the background during this detection step, so that
638 # measurement uses the most accurate background-subtraction.
639 detections = self.psf_detection.run(table=table, exposure=exposure, background=background)
640 self.psf_source_measurement.run(detections.sources, exposure)
641 psf_result = self.psf_measure_psf.run(exposure=exposure, sources=detections.sources)
642
643 log_psf("Final PSF:")
644
645 # Final repair with final PSF, removing cosmic rays this time.
646 self.psf_repair.run(exposure=exposure)
647 # Final measurement with the CRs removed.
648 self.psf_source_measurement.run(detections.sources, exposure)
649
650 # PSF is set on exposure; only return candidates for optional saving.
651 return detections.sources, background, psf_result.cellSet
652
653 def _measure_aperture_correction(self, exposure, bright_sources):
654 """Measure and set the ApCorrMap on the Exposure, using
655 previously-measured bright sources.
656
657 Parameters
658 ----------
659 exposure : `lsst.afw.image.Exposure`
660 Exposure to set the ApCorrMap on.
661 bright_sources : `lsst.afw.table.SourceCatalog`
662 Catalog of detected bright sources; modified to include columns
663 necessary for point source determination for the aperture correction
664 calculation.
665 """
666 result = self.measure_aperture_correction.run(exposure, bright_sources)
667 exposure.setApCorrMap(result.apCorrMap)
668
669 def _find_stars(self, exposure, background, id_generator):
670 """Detect stars on an exposure that has a PSF model, and measure their
671 PSF, circular aperture, compensated gaussian fluxes.
672
673 Parameters
674 ----------
675 exposure : `lsst.afw.image.Exposure`
676 Exposure to set the ApCorrMap on.
677 background : `lsst.afw.math.BackgroundList`
678 Background that was fit to the exposure during detection;
679 modified in-place during subsequent detection.
680 id_generator : `lsst.meas.base.IdGenerator`
681 Object that generates source IDs and provides random seeds.
682
683 Returns
684 -------
685 stars : `SourceCatalog`
686 Sources that are very likely to be stars, with a limited set of
687 measurements performed on them.
688 """
689 table = afwTable.SourceTable.make(self.initial_stars_schema.schema,
690 id_generator.make_table_id_factory())
691 # Re-estimate the background during this detection step, so that
692 # measurement uses the most accurate background-subtraction.
693 detections = self.star_detection.run(table=table, exposure=exposure, background=background)
694 sources = detections.sources
695 self.star_sky_sources.run(exposure.mask, id_generator.catalog_id, sources)
696
697 # TODO investigation: Could this deblender throw away blends of non-PSF sources?
698 self.star_deblend.run(exposure=exposure, sources=sources)
699 # The deblender may not produce a contiguous catalog; ensure
700 # contiguity for subsequent tasks.
701 if not sources.isContiguous():
702 sources = sources.copy(deep=True)
703
704 # Measure everything, and use those results to select only stars.
705 self.star_measurement.run(sources, exposure)
706 self.star_apply_aperture_correction.run(sources, exposure.info.getApCorrMap())
707 self.star_catalog_calculation.run(sources)
708 self.star_set_primary_flags.run(sources)
709
710 result = self.star_selector.run(sources)
711 # The star selector may not produce a contiguous catalog.
712 if not result.sourceCat.isContiguous():
713 return result.sourceCat.copy(deep=True)
714 else:
715 return result.sourceCat
716
717 def _match_psf_stars(self, psf_stars, stars):
718 """Match calibration stars to psf stars, to identify which were psf
719 candidates, and which were used or reserved during psf measurement.
720
721 Parameters
722 ----------
723 psf_stars : `lsst.afw.table.SourceCatalog`
724 PSF candidate stars that were sent to the psf determiner. Used to
725 populate psf-related flag fields.
726 stars : `lsst.afw.table.SourceCatalog`
727 Stars that will be used for calibration; psf-related fields will
728 be updated in-place.
729
730 Notes
731 -----
732 This code was adapted from CalibrateTask.copyIcSourceFields().
733 """
734 control = afwTable.MatchControl()
735 # Return all matched objects, to separate blends.
736 control.findOnlyClosest = False
737 matches = afwTable.matchXy(psf_stars, stars, 3.0, control)
738 deblend_key = stars.schema["deblend_nChild"].asKey()
739 matches = [m for m in matches if m[1].get(deblend_key) == 0]
740
741 # Because we had to allow multiple matches to handle parents, we now
742 # need to prune to the best (closest) matches.
743 # Closest matches is a dict of psf_stars source ID to Match record
744 # (psf_stars source, sourceCat source, distance in pixels).
745 best = {}
746 for match_psf, match_stars, d in matches:
747 match = best.get(match_psf.getId())
748 if match is None or d <= match[2]:
749 best[match_psf.getId()] = (match_psf, match_stars, d)
750 matches = list(best.values())
751 # We'll use this to construct index arrays into each catalog.
752 ids = np.array([(match_psf.getId(), match_stars.getId()) for match_psf, match_stars, d in matches]).T
753
754 # Check that no stars sources are listed twice; we already know
755 # that each match has a unique psf_stars id, due to using as the key
756 # in best above.
757 n_matches = len(matches)
758 n_unique = len(set(m[1].getId() for m in matches))
759 if n_unique != n_matches:
760 self.log.warning("%d psf_stars matched only %d stars; ",
761 n_matches, n_unique)
762 if n_matches == 0:
763 msg = (f"0 psf_stars out of {len(psf_stars)} matched {len(stars)} calib stars."
764 " Downstream processes probably won't have useful stars in this case."
765 " Is `star_source_selector` too strict?")
766 # TODO DM-39842: Turn this into an AlgorithmicError.
767 raise RuntimeError(msg)
768
769 # The indices of the IDs, so we can update the flag fields as arrays.
770 idx_psf_stars = np.searchsorted(psf_stars["id"], ids[0])
771 idx_stars = np.searchsorted(stars["id"], ids[1])
772 for field in self.psf_fields:
773 result = np.zeros(len(stars), dtype=bool)
774 result[idx_stars] = psf_stars[field][idx_psf_stars]
775 stars[field] = result
776
777 def _fit_astrometry(self, exposure, stars):
778 """Fit an astrometric model to the data and return the reference
779 matches used in the fit, and the fitted WCS.
780
781 Parameters
782 ----------
783 exposure : `lsst.afw.image.Exposure`
784 Exposure that is being fit, to get PSF and other metadata from.
785 Modified to add the fitted skyWcs.
786 stars : `SourceCatalog`
787 Good stars selected for use in calibration, with RA/Dec coordinates
788 computed from the pixel positions and fitted WCS.
789
790 Returns
791 -------
792 matches : `list` [`lsst.afw.table.ReferenceMatch`]
793 Reference/stars matches used in the fit.
794 """
795 result = self.astrometry.run(stars, exposure)
796 return result.matches, result.matchMeta
797
798 def _fit_photometry(self, exposure, stars):
799 """Fit a photometric model to the data and return the reference
800 matches used in the fit, and the fitted PhotoCalib.
801
802 Parameters
803 ----------
804 exposure : `lsst.afw.image.Exposure`
805 Exposure that is being fit, to get PSF and other metadata from.
806 Modified to be in nanojanksy units, with an assigned photoCalib
807 identically 1.
808 stars : `lsst.afw.table.SourceCatalog`
809 Good stars selected for use in calibration.
810
811 Returns
812 -------
813 calibrated_stars : `lsst.afw.table.SourceCatalog`
814 Star catalog with flux/magnitude columns computed from the fitted
815 photoCalib.
816 matches : `list` [`lsst.afw.table.ReferenceMatch`]
817 Reference/stars matches used in the fit.
818 photoCalib : `lsst.afw.image.PhotoCalib`
819 Photometric calibration that was fit to the star catalog.
820 """
821 result = self.photometry.run(exposure, stars)
822 calibrated_stars = result.photoCalib.calibrateCatalog(stars)
823 exposure.maskedImage = result.photoCalib.calibrateImage(exposure.maskedImage)
824 identity = afwImage.PhotoCalib(1.0,
825 result.photoCalib.getCalibrationErr(),
826 bbox=exposure.getBBox())
827 exposure.setPhotoCalib(identity)
828
829 return calibrated_stars, result.matches, result.matchMeta, result.photoCalib
830
831 def _summarize(self, exposure, stars, background):
832 """Compute summary statistics on the exposure and update in-place the
833 calibrations attached to it.
834
835 Parameters
836 ----------
837 exposure : `lsst.afw.image.Exposure`
838 Exposure that was calibrated, to get PSF and other metadata from.
839 Modified to contain the computed summary statistics.
840 stars : `SourceCatalog`
841 Good stars selected used in calibration.
842 background : `lsst.afw.math.BackgroundList`
843 Background that was fit to the exposure during detection of the
844 above stars.
845 """
846 # TODO investigation: because this takes the photoCalib from the
847 # exposure, photometric summary values may be "incorrect" (i.e. they
848 # will reflect the ==1 nJy calibration on the exposure, not the
849 # applied calibration). This needs to be checked.
850 summary = self.compute_summary_stats.run(exposure, stars, background)
851 exposure.info.setSummaryStats(summary)
A class to contain the data, WCS, and other information needed to describe an image of the sky.
Definition Exposure.h:72
The photometric calibration of an exposure.
Definition PhotoCalib.h:114
Pass parameters to algorithms that match list of sources.
Definition Match.h:45
runQuantum(self, butlerQC, inputRefs, outputRefs)
run(self, *exposures, id_generator=None, result=None)
_measure_aperture_correction(self, exposure, bright_sources)
_find_stars(self, exposure, background, id_generator)
__init__(self, initial_stars_schema=None, **kwargs)
_summarize(self, exposure, stars, background)
daf::base::PropertySet * set
Definition fits.cc:931
SourceMatchVector matchXy(SourceCatalog const &cat1, SourceCatalog const &cat2, double radius, MatchControl const &mc=MatchControl())
Compute all tuples (s1,s2,d) where s1 belings to cat1, s2 belongs to cat2 and d, the distance between...
Definition Match.cc:305