LSST Applications 29.0.1,g0fba68d861+132dd21e0a,g107a963962+1bb9f809a9,g1fd858c14a+005be21cae,g21d47ad084+8a07b29876,g325378336f+5d73323c8f,g330003fc43+40b4eaffc6,g35bb328faa+fcb1d3bbc8,g36ff55ed5b+9c28a42a87,g4e0f332c67+5fbd1e3e73,g53246c7159+fcb1d3bbc8,g60b5630c4e+9c28a42a87,g67b6fd64d1+a38b34ea13,g78460c75b0+2f9a1b4bcd,g786e29fd12+cf7ec2a62a,g7b71ed6315+fcb1d3bbc8,g86c591e316+6b2b2d0295,g8852436030+bf14db0e33,g89139ef638+a38b34ea13,g8b8da53e10+e3777245af,g9125e01d80+fcb1d3bbc8,g989de1cb63+a38b34ea13,g9f1445be69+9c28a42a87,g9f33ca652e+52c8f07962,ga9baa6287d+9c28a42a87,ga9e4eb89a6+9f84bd6575,gabe3b4be73+1e0a283bba,gb037a4e798+f3cbcd26c0,gb1101e3267+e7be8da0f8,gb58c049af0+f03b321e39,gb89ab40317+a38b34ea13,gcf25f946ba+bf14db0e33,gd6cbbdb0b4+bce7f7457e,gd9a9a58781+fcb1d3bbc8,gde0f65d7ad+53d424b1ae,ge278dab8ac+222406d50a,ge410e46f29+a38b34ea13,ge80e9994a3+664d6357dc,gf67bdafdda+a38b34ea13
LSST Data Management Base Package
Loading...
Searching...
No Matches
verifyWcs.py
Go to the documentation of this file.
2# LSST Data Management System
3# Copyright 2008, 2009, 2010 LSST Corporation.
4#
5# This product includes software developed by the
6# LSST Project (http://www.lsst.org/).
7#
8# This program is free software: you can redistribute it and/or modify
9# it under the terms of the GNU General Public License as published by
10# the Free Software Foundation, either version 3 of the License, or
11# (at your option) any later version.
12#
13# This program is distributed in the hope that it will be useful,
14# but WITHOUT ANY WARRANTY; without even the implied warranty of
15# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16# GNU General Public License for more details.
17#
18# You should have received a copy of the LSST License Statement and
19# the GNU General Public License along with this program. If not,
20# see <http://www.lsstcorp.org/LegalNotices/>.
21#
22
23__all__ = ["checkMatches"]
24
25
26import numpy as np
27import logging
28
29import lsst.geom
30import lsst.afw.detection as afwDetection
31import lsst.afw.math as afwMath
32import lsst.meas.algorithms as measAlg
33
34_LOG = logging.getLogger(__name__)
35
36
37def checkMatches(srcMatchSet, exposure, log=None):
38 """Check astrometric matches and assess Wcs quality by computing statics
39 over spacial cells in the image.
40
41 Parameters
42 ----------
43 srcMatchSet : `list` of `lsst.afw.table.ReferenceMatch`
44 List of matched sources to a reference catalog.
45 exposure : `lsst.afw.image.Exposure`
46 Image the sources in srcMatchSet were detected/measured in.
47 log : `lsst.log.Log` or `logging.Logger`
48 Logger object.
49
50 Returns
51 -------
52 values : `dict`
53 Result dictionary with fields:
54
55 - ``minObjectsPerCell`` : (`int`)
56 - ``maxObjectsPerCell`` : (`int`)
57 - ``meanObjectsPerCell`` : (`float`)
58 - ``stdObjectsPerCell`` : (`float`)
59 """
60 if not exposure:
61 return {}
62
63 if log is None:
64 log = _LOG
65
66 im = exposure.getMaskedImage().getImage()
67 width, height = im.getWidth(), im.getHeight()
68 nx, ny = 3, 3
69 w, h = width//nx, height//ny
70
71 if w == 0:
72 w = 1
73 while nx*w < width:
74 w += 1
75
76 if h == 0:
77 h = 1
78 while ny*h < height:
79 h += 1
80
81 cellSet = afwMath.SpatialCellSet(
82 lsst.geom.Box2I(lsst.geom.Point2I(0, 0), lsst.geom.Extent2I(width, height)), w, h)
83 #
84 # Populate cellSet
85 #
86 i = -1
87 for m in srcMatchSet:
88 i += 1
89
90 src = m.second
91 csrc = afwDetection.Source()
92 csrc.setId(i)
93 csrc.setXAstrom(src.getXAstrom())
94 csrc.setYAstrom(src.getYAstrom())
95
96 try:
97 cellSet.insertCandidate(measAlg.PsfCandidateF(csrc, exposure.getMaskedImage()))
98 except Exception as e:
99 log.warning("%s", e)
100
101 ncell = len(cellSet.getCellList())
102 nobj = np.ndarray(ncell, dtype='i')
103
104 for i in range(ncell):
105 cell = cellSet.getCellList()[i]
106
107 nobj[i] = cell.size()
108
109 dx = np.ndarray(cell.size())
110 dy = np.ndarray(cell.size())
111
112 j = 0
113 for cand in cell:
114 #
115 # Swig doesn't know that we're a SpatialCellImageCandidate; all it knows is that we have
116 # a SpatialCellCandidate so we need an explicit (dynamic) cast
117 #
118 mid = cand.getSource().getId()
119 dx[j] = srcMatchSet[mid].first.getXAstrom() - srcMatchSet[mid].second.getXAstrom()
120 dy[j] = srcMatchSet[mid].first.getYAstrom() - srcMatchSet[mid].second.getYAstrom()
121
122 j += 1
123
124 log.debug("%s %-30s %8s dx,dy = %5.2f,%5.2f rms_x,y = %5.2f,%5.2f",
125 cell.getLabel(), cell.getBBox(), ("nobj=%d" % cell.size()),
126 dx.mean(), dy.mean(), dx.std(), dy.std())
127
128 nobj.sort()
129
130 values = {}
131 values["minObjectsPerCell"] = int(nobj[0]) # otherwise it's a numpy integral type
132 values["maxObjectsPerCell"] = int(nobj[-1])
133 values["meanObjectsPerCell"] = nobj.mean()
134 values["stdObjectsPerCell"] = nobj.std()
135
136 return values
A collection of SpatialCells covering an entire image.
An integer coordinate rectangle.
Definition Box.h:55
checkMatches(srcMatchSet, exposure, log=None)
Definition verifyWcs.py:37