LSST Applications 29.1.1,g0fba68d861+94d977d4f8,g1fd858c14a+0a42b1a450,g21d47ad084+bae5d1592d,g35bb328faa+fcb1d3bbc8,g36ff55ed5b+4036fd6440,g4e0f332c67+abab7ee1ee,g53246c7159+fcb1d3bbc8,g60b5630c4e+4036fd6440,g67b6fd64d1+31de10a2f7,g72a202582f+7a25662ef1,g78460c75b0+2f9a1b4bcd,g786e29fd12+cf7ec2a62a,g86c591e316+1a75853d69,g8852436030+8220ab3cb6,g88f4e072da+7005418d1d,g89139ef638+31de10a2f7,g8b8da53e10+8f7b08dc1c,g9125e01d80+fcb1d3bbc8,g989de1cb63+31de10a2f7,g9f1445be69+4036fd6440,g9f33ca652e+fcef3ba435,ga9baa6287d+4036fd6440,ga9e4eb89a6+a41a34c2ba,gabe3b4be73+1e0a283bba,gb0b61e0e8e+d456af7c26,gb1101e3267+f17a9d70ea,gb58c049af0+f03b321e39,gb89ab40317+31de10a2f7,gce29eb0867+05ed69485a,gcf25f946ba+8220ab3cb6,gd6cbbdb0b4+11317e7a17,gd9a9a58781+fcb1d3bbc8,gde0f65d7ad+b4f50ea554,ge278dab8ac+50e2446c94,ge410e46f29+31de10a2f7,ge80e9994a3+32bb9bc1c9,gf5e32f922b+fcb1d3bbc8,gf67bdafdda+31de10a2f7
LSST Data Management Base Package
Loading...
Searching...
No Matches
priorsContinued.py
Go to the documentation of this file.
1#!/usr/bin/env python
2#
3# LSST Data Management System
4# Copyright 2008-2013 LSST Corporation.
5#
6# This product includes software developed by the
7# LSST Project (http://www.lsst.org/).
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the LSST License Statement and
20# the GNU General Public License along with this program. If not,
21# see <http://www.lsstcorp.org/LegalNotices/>.
22#
23
24__all__ = ("fitMixture", "SemiEmpiricalPriorConfig",
25 "SoftenedLinearPriorControl")
26
27import numpy as np
28
29from lsst.pex.config import makeConfigClass
30from lsst.utils import continueClass
31
32from .._modelfitLib import (Mixture, SemiEmpiricalPriorControl, SemiEmpiricalPrior,
33 SoftenedLinearPriorControl, SoftenedLinearPrior,
34 MixturePrior)
35
36
37SemiEmpiricalPriorConfig = makeConfigClass(SemiEmpiricalPriorControl)
38
39SoftenedLinearPriorConfig = makeConfigClass(SoftenedLinearPriorControl)
40
41
42@continueClass # noqa: F811 (FIXME: remove for py 3.8+)
43class SemiEmpiricalPrior: # noqa: F811
44
45 ConfigClass = SemiEmpiricalPriorConfig
46
47
48@continueClass # noqa: F811 (FIXME: remove for py 3.8+)
49class SoftenedLinearPrior: # noqa: F811
50
51 ConfigClass = SoftenedLinearPriorConfig
52
53
54def fitMixture(data, nComponents, minFactor=0.25, maxFactor=4.0,
55 nIterations=20, df=float("inf")):
56 """Fit a ``Mixture`` distribution to a set of (e1, e2, r) data points,
57 returing a ``MixturePrior`` object.
58
59 Parameters
60 ----------
61 data : numpy.ndarray
62 array of data points to fit; shape=(N,3)
63 nComponents : int
64 number of components in the mixture distribution
65 minFactor : float
66 ellipticity variance of the smallest component in the initial mixture,
67 relative to the measured variance
68 maxFactor : float
69 ellipticity variance of the largest component in the initial mixture,
70 relative to the measured variance
71 nIterations : int
72 number of expectation-maximization update iterations
73 df : float
74 number of degrees of freedom for component Student's T distributions
75 (inf=Gaussian).
76 """
77 components = Mixture.ComponentList()
78 rMu = data[:, 2].mean()
79 rSigma = data[:, 2].var()
80 eSigma = 0.5*(data[:, 0].var() + data[:, 1].var())
81 mu = np.array([0.0, 0.0, rMu], dtype=float)
82 baseSigma = np.array([[eSigma, 0.0, 0.0],
83 [0.0, eSigma, 0.0],
84 [0.0, 0.0, rSigma]])
85 for factor in np.linspace(minFactor, maxFactor, nComponents):
86 sigma = baseSigma.copy()
87 sigma[:2, :2] *= factor
88 components.append(Mixture.Component(1.0, mu, sigma))
89 mixture = Mixture(3, components, df)
90 restriction = MixturePrior.getUpdateRestriction()
91 for i in range(nIterations):
92 mixture.updateEM(data, restriction)
93 return mixture
A weighted Student's T or Gaussian distribution used as a component in a Mixture.
Definition Mixture.h:47
fitMixture(data, nComponents, minFactor=0.25, maxFactor=4.0, nIterations=20, df=float("inf"))