LSST Applications g0fba68d861+5616995c1c,g1ebb85f214+2420ccdea7,g1fd858c14a+44c57a1f81,g21d47ad084+8e51fce9ac,g262e1987ae+1a7d68eb3b,g2cef7863aa+3bd8df3d95,g35bb328faa+fcb1d3bbc8,g36ff55ed5b+2420ccdea7,g47891489e3+5c6313fe9a,g53246c7159+fcb1d3bbc8,g646c943bdb+dbb9921566,g67b6fd64d1+5c6313fe9a,g6bd32b75b5+2420ccdea7,g74acd417e5+37fc0c974d,g786e29fd12+cf7ec2a62a,g86c591e316+6e13bcb9e9,g87389fa792+1e0a283bba,g89139ef638+5c6313fe9a,g90f42f885a+fce05a46d3,g9125e01d80+fcb1d3bbc8,g93e38de9ac+5345a64125,g95a1e89356+47d08a1cc6,g97be763408+bba861c665,ga9e4eb89a6+85210110a1,gb0b61e0e8e+1f27f70249,gb58c049af0+f03b321e39,gb89ab40317+5c6313fe9a,gc4e39d7843+4e09c98c3d,gd16ba4ae74+5402bcf54a,gd8ff7fe66e+2420ccdea7,gd9a9a58781+fcb1d3bbc8,gdab6d2f7ff+37fc0c974d,gde280f09ee+604b327636,ge278dab8ac+50e2446c94,ge410e46f29+5c6313fe9a,gef3c2e6661+6b480e0fb7,gf67bdafdda+5c6313fe9a,gffca2db377+fcb1d3bbc8,v29.2.0.rc1
LSST Data Management Base Package
|
This file contains functions for space-filling curves. More...
#include <cstdint>
#include <tuple>
Go to the source code of this file.
Namespaces | |
namespace | lsst |
namespace | lsst::sphgeom |
Functions | |
std::uint64_t | lsst::sphgeom::mortonIndex (std::uint32_t x, std::uint32_t y) |
mortonIndex interleaves the bits of x and y. | |
std::tuple< std::uint32_t, std::uint32_t > | lsst::sphgeom::mortonIndexInverse (std::uint64_t z) |
mortonIndexInverse separates the even and odd bits of z. | |
std::uint64_t | lsst::sphgeom::mortonToHilbert (std::uint64_t z, int m) |
mortonToHilbert converts the 2m-bit Morton index z to the corresponding Hilbert index. | |
std::uint64_t | lsst::sphgeom::hilbertToMorton (std::uint64_t h, int m) |
hilbertToMorton converts the 2m-bit Hilbert index h to the corresponding Morton index. | |
std::uint64_t | lsst::sphgeom::hilbertIndex (std::uint32_t x, std::uint32_t y, int m) |
hilbertIndex returns the index of (x, y) in a 2-D Hilbert curve. | |
std::tuple< std::uint32_t, std::uint32_t > | lsst::sphgeom::hilbertIndexInverse (std::uint64_t h, int m) |
hilbertIndexInverse returns the point (x, y) with Hilbert index h, where x and y are m bit integers. | |
std::uint8_t | lsst::sphgeom::log2 (std::uint64_t x) |
std::uint8_t | lsst::sphgeom::log2 (std::uint32_t x) |
This file contains functions for space-filling curves.
Mappings between 2-D points with non-negative integer coordinates and their corresponding Morton or Hilbert indexes are provided.
The Morton order implementation, mortonIndex, is straightforward. The Hilbert order implementation is derived from Algorithm 2 in:
C. Hamilton. Compact Hilbert indices. Technical Report CS-2006-07, Dalhousie University, Faculty of Computer Science, Jul 2006. https://www.cs.dal.ca/research/techreports/cs-2006-07
Using the variable names from that paper, n is fixed at 2. As a first step, the arithmetic in the loop over the bits of the input coordinates is replaced by a table lookup. In particular, the lookup maps the values of (e, d, l) at the beginning of a loop iteration to the values (e, d, w) at the end. Since e and d can both be represented by a single bit, and l and w are 2 bits wide, the lookup table has 16 4 bit entries and fits in a single 64 bit integer constant (0x8d3ec79a6b5021f4). The implementation then looks like:
inline std::uint64_t hilbertIndex(std::uint32_t x, std::uint32_t y, std::uint32_t m) { std::uint64_t const z = mortonIndex(x, y); std::uint64_t h = 0; std::uint64_t i = 0; for (m = 2 * m; m != 0;) { m -= 2; i = (i & 0xc) | ((z >> m) & 3); i = UINT64_C(0x8d3ec79a6b5021f4) >> (i * 4); h = (h << 2) | (i & 3); } return h; }
Note that interleaving x and y with mortonIndex beforehand allows the loop to extract 2 bits at a time from z, rather than extracting bits from x and y and then pasting them together. This lowers the total operation count.
Performance is further increased by executing j loop iterations at a time. This requires using a larger lookup table that maps the values of e and d at the beginning of a loop iteration, along with 2j input bits, to the values of e and d after j iterations, along with 2j output bits. In this implementation, j = 3, which corresponds to a 256 byte LUT. On recent Intel CPUs the LUT fits in 4 cache lines, and, because of adjacent cache line prefetch, should become cache resident after just 2 misses.
For a helpful presentation of the technical report, as well as a reference implementation of its algorithms in Python, see Pierre de Buyl's notebook. The Hilbert curve lookup tables below were generated by a modification of that code (available in makeHilbertLuts.py).
Definition in file curve.h.