LSST Applications g04e9c324dd+8c5ae1fdc5,g134cb467dc+b203dec576,g18429d2f64+358861cd2c,g199a45376c+0ba108daf9,g1fd858c14a+dd066899e3,g262e1987ae+ebfced1d55,g29ae962dfc+72fd90588e,g2cef7863aa+aef1011c0b,g35bb328faa+8c5ae1fdc5,g3fd5ace14f+b668f15bc5,g4595892280+3897dae354,g47891489e3+abcf9c3559,g4d44eb3520+fb4ddce128,g53246c7159+8c5ae1fdc5,g67b6fd64d1+abcf9c3559,g67fd3c3899+1f72b5a9f7,g74acd417e5+cb6b47f07b,g786e29fd12+668abc6043,g87389fa792+8856018cbb,g89139ef638+abcf9c3559,g8d7436a09f+bcf525d20c,g8ea07a8fe4+9f5ccc88ac,g90f42f885a+6054cc57f1,g97be763408+06f794da49,g9dd6db0277+1f72b5a9f7,ga681d05dcb+7e36ad54cd,gabf8522325+735880ea63,gac2eed3f23+abcf9c3559,gb89ab40317+abcf9c3559,gbf99507273+8c5ae1fdc5,gd8ff7fe66e+1f72b5a9f7,gdab6d2f7ff+cb6b47f07b,gdc713202bf+1f72b5a9f7,gdfd2d52018+8225f2b331,ge365c994fd+375fc21c71,ge410e46f29+abcf9c3559,geaed405ab2+562b3308c0,gf9a733ac38+8c5ae1fdc5,w.2025.35
LSST Data Management Base Package
Loading...
Searching...
No Matches
_actions.py
Go to the documentation of this file.
1from __future__ import annotations
2
3__all__ = ("SingleColumnAction", "MultiColumnAction", "CoordColumn", "MagColumnDN", "SumColumns", "AddColumn",
4 "DivideColumns", "SubtractColumns", "MultiplyColumns", "FractionalDifferenceColumns",
5 "MagColumnNanoJansky", "DiffOfDividedColumns", "PercentDiffOfDividedColumns",)
6
7from typing import Iterable
8
9import warnings
10import numpy as np
11import pandas as pd
12from astropy import units
13
14from lsst.pex.config.configurableActions import ConfigurableActionStructField, ConfigurableActionField
15from ._baseDataFrameActions import DataFrameAction
16from ._evalColumnExpression import makeColumnExpressionAction
17
18from lsst.pex.config import Field
19
20
22 column = Field(doc="Column to load for this action", dtype=str, optional=False)
23
24 @property
25 def columns(self) -> Iterable[str]:
26 return (self.column, )
27
28 def __call__(self, df, **kwargs):
29 return df[self.column]
30
31
33 actions = ConfigurableActionStructField(doc="Configurable actions to use in a joint action")
34
35 @property
36 def columns(self) -> Iterable[str]:
37 yield from (column for action in self.actions for column in action.columns)
38
39
41 inRadians = Field(doc="Return the column in radians if true", default=True, dtype=bool)
42
43 def __call__(self, df):
44 col = super().__call__(df)
45 return col * 180 / np.pi if self.inRadians else col
46
47
49 coadd_zeropoint = Field(doc="Magnitude zero point", dtype=float, default=27)
50
51 def __call__(self, df: pd.DataFrame, **kwargs):
52 if not (fluxMag0 := kwargs.get('fluxMag0')):
53 fluxMag0 = 1/np.power(10, -0.4*self.coadd_zeropoint)
54
55 with warnings.catch_warnings():
56 warnings.filterwarnings('ignore', r'invalid value encountered')
57 warnings.filterwarnings('ignore', r'divide by zero')
58 return -2.5 * np.log10(df[self.column] / fluxMag0)
59
60
62
63 def __call__(self, df: pd.DataFrame, **kwargs):
64
65 with warnings.catch_warnings():
66 warnings.filterwarnings('ignore', r'invalid value encountered')
67 warnings.filterwarnings('ignore', r'divide by zero')
68 return -2.5 * np.log10((df[self.column] * 1e-9) / 3631.0)
69
70
72 ab_flux_scale = Field(doc="Scaling of ab flux", dtype=float, default=(0*units.ABmag).to_value(units.nJy))
73 coadd_zeropoint = Field(doc="Magnitude zero point", dtype=float, default=27)
74
75 def __call__(self, df, **kwargs):
76 dataNumber = super().__call__(df, **kwargs)
77 if not (fluxMag0 := kwargs.get('fluxMag0')):
78 fluxMag0 = 1/np.power(10, -0.4*self.coadd_zeropoint)
79 return self.ab_flux_scale * dataNumber / fluxMag0
80
81 def setDefaults(self):
82 super().setDefaults()
83 self.cache = True # cache this action for future calls
84
85
87 flux_mag_err = Field(doc="Error in the magnitude zeropoint", dtype=float, default=0)
88 flux_action = ConfigurableActionField(doc="Action to use if flux is not provided to the call method",
89 default=NanoJansky, dtype=DataFrameAction)
90
91 @property
92 def columns(self):
93 yield from zip((self.column,), self.flux_action.columns)
94
95 def __call__(self, df, flux_column=None, flux_mag_err=None, **kwargs):
96 if flux_column is None:
97 flux_column = self.flux_action(df, **kwargs)
98 if flux_mag_err is None:
99 flux_mag_err = self.flux_mag_err
100
101
102_docs = """This is a `DataFrameAction` that is designed to add two columns
103together and return the result.
104"""
105SumColumns = makeColumnExpressionAction("SumColumns", "colA+colB",
106 exprDefaults={"colA": SingleColumnAction,
107 "colB": SingleColumnAction},
108 docstring=_docs)
109
110_docs = """This is a `MultiColumnAction` that is designed to subtract two columns
111together and return the result.
112"""
113SubtractColumns = makeColumnExpressionAction("SubtractColumns", "colA-colB",
114 exprDefaults={"colA": SingleColumnAction,
115 "colB": SingleColumnAction},
116 docstring=_docs)
117
118_docs = """This is a `MultiColumnAction` that is designed to multiply two columns
119together and return the result.
120"""
121MultiplyColumns = makeColumnExpressionAction("MultiplyColumns", "colA*colB",
122 exprDefaults={"colA": SingleColumnAction,
123 "colB": SingleColumnAction},
124 docstring=_docs)
125
126_docs = """This is a `MultiColumnAction` that is designed to divide two columns
127together and return the result.
128"""
129DivideColumns = makeColumnExpressionAction("DivideColumns", "colA/colB",
130 exprDefaults={"colA": SingleColumnAction,
131 "colB": SingleColumnAction},
132 docstring=_docs)
133
134_docs = """This is a `MultiColumnAction` that is designed to divide two columns
135together, subtract one and return the result.
136"""
137FractionalDifferenceColumns = makeColumnExpressionAction("FractionalDifferenceColumns", "(colA-colB)/colB",
138 exprDefaults={"colA": SingleColumnAction,
139 "colB": SingleColumnAction},
140 docstring=_docs)
141
142_docs = """This is a `MultiColumnAction` that is designed to subtract the division of two columns
143from the division of two other columns and return the result (i.e. colA1/colB1 - colA2/colB2).
144"""
145DiffOfDividedColumns = makeColumnExpressionAction("DiffOfDividedColumns", "(colA1/colB1)-(colA2/colB2)",
146 exprDefaults={"colA1": SingleColumnAction,
147 "colB1": SingleColumnAction,
148 "colA2": SingleColumnAction,
149 "colB2": SingleColumnAction},
150 docstring=_docs)
151_docs = """This is a `MultiColumnAction` that is designed to compute the percent difference
152between the division of two columns and the division of two other columns and return the result
153(i.e. 100*((colA1/colB1 - colA2/colB2)/(colA1/colB1))).
154"""
155PercentDiffOfDividedColumns = makeColumnExpressionAction("PercentDiffOfDividedColumns",
156 "100*(((colA1/colB1)-(colA2/colB2))/(colA1/colB1))",
157 exprDefaults={"colA1": SingleColumnAction,
158 "colB1": SingleColumnAction,
159 "colA2": SingleColumnAction,
160 "colB2": SingleColumnAction},
161 docstring=_docs)
162
163
165 aggregator = ConfigurableActionField(doc="This is an instance of a Dataframe action that will be used "
166 "to create a new column", dtype=DataFrameAction)
167 newColumn = Field(doc="Name of the new column to add", dtype=str)
168
169 @property
170 def columns(self) -> Iterable[str]:
171 yield from self.aggregator.columns
172
173 def __call__(self, df, **kwargs) -> pd.DataFrame:
174 # do your calculation and and
175 df[self.newColumn] = self.aggregator(df, kwargs)
176 return df
Type[DataFrameAction] makeColumnExpressionAction(str className, str expr, Optional[Mapping[str, Union[DataFrameAction, Type[DataFrameAction]]]] exprDefaults=None, str docstring=None)