LSST Applications g063fba187b+cac8b7c890,g0f08755f38+6aee506743,g1653933729+a8ce1bb630,g168dd56ebc+a8ce1bb630,g1a2382251a+b4475c5878,g1dcb35cd9c+8f9bc1652e,g20f6ffc8e0+6aee506743,g217e2c1bcf+73dee94bd0,g28da252d5a+1f19c529b9,g2bbee38e9b+3f2625acfc,g2bc492864f+3f2625acfc,g3156d2b45e+6e55a43351,g32e5bea42b+1bb94961c2,g347aa1857d+3f2625acfc,g35bb328faa+a8ce1bb630,g3a166c0a6a+3f2625acfc,g3e281a1b8c+c5dd892a6c,g3e8969e208+a8ce1bb630,g414038480c+5927e1bc1e,g41af890bb2+8a9e676b2a,g7af13505b9+809c143d88,g80478fca09+6ef8b1810f,g82479be7b0+f568feb641,g858d7b2824+6aee506743,g89c8672015+f4add4ffd5,g9125e01d80+a8ce1bb630,ga5288a1d22+2903d499ea,gb58c049af0+d64f4d3760,gc28159a63d+3f2625acfc,gcab2d0539d+b12535109e,gcf0d15dbbd+46a3f46ba9,gda6a2b7d83+46a3f46ba9,gdaeeff99f8+1711a396fd,ge79ae78c31+3f2625acfc,gef2f8181fd+0a71e47438,gf0baf85859+c1f95f4921,gfa517265be+6aee506743,gfa999e8aa5+17cd334064,w.2024.51
LSST Data Management Base Package
Loading...
Searching...
No Matches
classification.py
Go to the documentation of this file.
1# This file is part of meas_base.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
21
22"""Definition and registration of classification plugins.
23"""
24
25import numpy as np
26
27import lsst.pex.config
28from .catalogCalculation import CatalogCalculationPluginConfig, CatalogCalculationPlugin
29from .pluginRegistry import register
30
31__all__ = (
32 "CatalogCalculationClassificationConfig", "CatalogCalculationClassificationPlugin",
33)
34
35
37 """Configuration for catalog classification plugin.
38 """
39
40 fluxRatio = lsst.pex.config.Field(dtype=float, default=.95, optional=True,
41 doc="critical ratio of model to psf flux")
42 modelErrFactor = lsst.pex.config.Field(dtype=float, default=0.0, optional=True,
43 doc="correction factor for modelFlux error")
44 psfErrFactor = lsst.pex.config.Field(dtype=float, default=0.0, optional=True,
45 doc="correction factor for psfFlux error")
46
47
48@register("base_ClassificationExtendedness")
50 """Plugin which calculates a binary measure of source extendedness.
51
52 Extendedness is based on a simple cut of the ratio of the PSF flux to the
53 model flux.
54
55 Notes
56 -----
57 Because the fluxes on which this algorithm is based on are slot
58 measurements, they can be provided by different algorithms, and the
59 `~CatalogCalculationClassificationConfig.fluxRatio` threshold used by this
60 algorithm should generally be set differently for different algorithms.
61 To do this, plot the difference between the PSF magnitude and the model
62 magnitude vs. the PSF magnitude, and look for where the cloud of galaxies
63 begins.
64 """
65
66 ConfigClass = CatalogCalculationClassificationConfig
67
68 @classmethod
72 def __init__(self, config, name, schema, metadata):
73 CatalogCalculationPlugin.__init__(self, config, name, schema, metadata)
74 self.keyProbability = schema.addField(name + "_value", type="D",
75 doc="Set to 1 for extended sources, 0 for point sources.")
76 self.keyFlag = schema.addField(name + "_flag", type="Flag", doc="Set to 1 for any fatal failure.")
77
78 def calculate(self, measRecord):
79 modelFlux = measRecord.getModelInstFlux()
80 psfFlux = measRecord.getPsfInstFlux()
81 modelFluxFlag = (measRecord.getModelFluxFlag()
82 if measRecord.table.getModelFluxSlot().isValid()
83 else False)
84 psfFluxFlag = (measRecord.getPsfFluxFlag()
85 if measRecord.table.getPsfFluxSlot().isValid()
86 else False)
87 flux1 = self.config.fluxRatio*modelFlux
88 if self.config.modelErrFactor != 0:
89 flux1 += self.config.modelErrFactor*measRecord.getModelInstFluxErr()
90 flux2 = psfFlux
91 if not self.config.psfErrFactor == 0:
92 flux2 += self.config.psfErrFactor*measRecord.getPsfInstFluxErr()
93
94 # A generic failure occurs when either FluxFlag is set to True
95 # A generic failure also occurs if either calculated flux value is NaN:
96 # this can occur if the Flux field itself is NaN,
97 # or the ErrFactor != 0 and the FluxErr is NaN
98 if np.isnan(flux1) or np.isnan(flux2) or modelFluxFlag or psfFluxFlag:
99 self.failfail(measRecord)
100 else:
101 measRecord.set(self.keyProbability, 0.0 if flux1 < flux2 else 1.0)
102
103 def fail(self, measRecord, error=None):
104 measRecord.set(self.keyFlag, True)
fail(self, measRecord, error=None)
bool isValid
Definition fits.cc:404