LSST Applications g013ef56533+7c9321ec0f,g042eb84c57+c6cfa41bc3,g199a45376c+0ba108daf9,g1fd858c14a+fcad0d0313,g210f2d0738+c0f94c6586,g262e1987ae+a7e710680e,g29ae962dfc+fb55f2edb0,g2ac17093b6+61d6563b1e,g2b1d02342f+df6f932764,g2cef7863aa+aef1011c0b,g2f7ad74990+c0f94c6586,g35bb328faa+8c5ae1fdc5,g3fd5ace14f+53cf87ae69,g47891489e3+4316d04fff,g511e8cfd20+baa56acf6c,g53246c7159+8c5ae1fdc5,g54cd7ddccb+fd7ad03fde,g64539dfbff+c0f94c6586,g67b6fd64d1+4316d04fff,g67fd3c3899+c0f94c6586,g6985122a63+4316d04fff,g74acd417e5+ca833bee28,g786e29fd12+668abc6043,g81db2e9a8d+b2ec8e584f,g87389fa792+8856018cbb,g89139ef638+4316d04fff,g8d7436a09f+0a24083b20,g8ea07a8fe4+760ca7c3fc,g90f42f885a+033b1d468d,g97be763408+11eb8fd5b8,gbf99507273+8c5ae1fdc5,gcdda8b9158+e4c84c9d5c,gce8aa8abaa+8c5ae1fdc5,gd7ef33dd92+4316d04fff,gdab6d2f7ff+ca833bee28,ge410e46f29+4316d04fff,geaed405ab2+c4bbc419c6,gf9a733ac38+8c5ae1fdc5,w.2025.40
LSST Data Management Base Package
Loading...
Searching...
No Matches
lsst::afw::math::NeuralNetCovariogram< T > Class Template Reference

a Covariogram that recreates a neural network with one hidden layer and infinite units in that layer More...

#include <GaussianProcess.h>

Inheritance diagram for lsst::afw::math::NeuralNetCovariogram< T >:
lsst::afw::math::Covariogram< T >

Public Member Functions

 ~NeuralNetCovariogram () override
 
 NeuralNetCovariogram ()
 
void setSigma0 (double sigma0)
 set the _sigma0 hyper parameter
 
void setSigma1 (double sigma1)
 set the _sigma1 hyper parameter
 
operator() (ndarray::Array< const T, 1, 1 > const &, ndarray::Array< const T, 1, 1 > const &) const override
 Actually evaluate the covariogram function relating two points you want to interpolate from.
 

Detailed Description

template<typename T>
class lsst::afw::math::NeuralNetCovariogram< T >

a Covariogram that recreates a neural network with one hidden layer and infinite units in that layer

Contains two hyper parameters (_sigma0 and _sigma1) that characterize the expected variance of the function being interpolated

see Rasmussen and Williams (2006) http://www.gaussianprocess.org/gpml/ equation 4.29

Definition at line 193 of file GaussianProcess.h.

Constructor & Destructor Documentation

◆ ~NeuralNetCovariogram()

template<typename T>
lsst::afw::math::NeuralNetCovariogram< T >::~NeuralNetCovariogram ( )
overridedefault

◆ NeuralNetCovariogram()

template<typename T>
lsst::afw::math::NeuralNetCovariogram< T >::NeuralNetCovariogram ( )
explicit

Definition at line 2025 of file GaussianProcess.cc.

2025 {
2026 _sigma0 = 1.0;
2027 _sigma1 = 1.0;
2028}

Member Function Documentation

◆ operator()()

template<typename T>
T lsst::afw::math::NeuralNetCovariogram< T >::operator() ( ndarray::Array< const T, 1, 1 > const & p1,
ndarray::Array< const T, 1, 1 > const & p2 ) const
overridevirtual

Actually evaluate the covariogram function relating two points you want to interpolate from.

Parameters
[in]p1the first point
[in]p2the second point

Reimplemented from lsst::afw::math::Covariogram< T >.

Definition at line 2031 of file GaussianProcess.cc.

2032 {
2033 int i, dim;
2034 double num, denom1, denom2, arg;
2035
2036 dim = p1.template getSize<0>();
2037
2038 num = 2.0 * _sigma0;
2039 denom1 = 1.0 + 2.0 * _sigma0;
2040 denom2 = 1.0 + 2.0 * _sigma0;
2041
2042 for (i = 0; i < dim; i++) {
2043 num += 2.0 * p1[i] * p2[i] * _sigma1;
2044 denom1 += 2.0 * p1[i] * p1[i] * _sigma1;
2045 denom2 += 2.0 * p2[i] * p2[i] * _sigma1;
2046 }
2047
2048 arg = num / ::sqrt(denom1 * denom2);
2049 return T(2.0 * (::asin(arg)) / 3.141592654);
2050}
a Covariogram that recreates a neural network with one hidden layer and infinite units in that layer
T sqrt(T... args)

◆ setSigma0()

template<typename T>
void lsst::afw::math::NeuralNetCovariogram< T >::setSigma0 ( double sigma0)

set the _sigma0 hyper parameter

Definition at line 2053 of file GaussianProcess.cc.

2053 {
2054 _sigma0 = sigma0;
2055}

◆ setSigma1()

template<typename T>
void lsst::afw::math::NeuralNetCovariogram< T >::setSigma1 ( double sigma1)

set the _sigma1 hyper parameter

Definition at line 2058 of file GaussianProcess.cc.

2058 {
2059 _sigma1 = sigma1;
2060}

The documentation for this class was generated from the following files: