Loading [MathJax]/extensions/tex2jax.js
LSST Applications g0fba68d861+5b9ba6aee1,g1ec0fe41b4+e220e2fb2f,g1fd858c14a+120b017347,g35bb328faa+fcb1d3bbc8,g4d2262a081+57a06a8609,g53246c7159+fcb1d3bbc8,g56a49b3a55+8d793c2a3d,g60b5630c4e+4e8d433789,g60dcce3b99+6eff471efc,g67b6fd64d1+fad15079a7,g78460c75b0+2f9a1b4bcd,g786e29fd12+cf7ec2a62a,g8180f54f50+65cb53bb37,g8352419a5c+fcb1d3bbc8,g8852436030+ae791ba189,g89139ef638+fad15079a7,g9125e01d80+fcb1d3bbc8,g94187f82dc+4e8d433789,g989de1cb63+fad15079a7,g9ccd5d7f00+cce09d2c12,g9d31334357+4e8d433789,g9f33ca652e+323fd354f8,gabe3b4be73+1e0a283bba,gabf8522325+94c30d56e9,gb1101e3267+5e0f808207,gb58c049af0+f03b321e39,gb89ab40317+fad15079a7,gc0af124501+a88dc73679,gcf25f946ba+ae791ba189,gd6cbbdb0b4+8d7f1baacb,gdb1c4ca869+16879ca1a6,gde0f65d7ad+11b49afd66,ge1ad929117+4e8d433789,ge278dab8ac+4d6e48c014,ge410e46f29+fad15079a7,gf5e32f922b+fcb1d3bbc8,gf618743f1b+8ff1364817,gf67bdafdda+fad15079a7,w.2025.17
LSST Data Management Base Package
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
lsst::afw::math::NeuralNetCovariogram< T > Class Template Reference

a Covariogram that recreates a neural network with one hidden layer and infinite units in that layer More...

#include <GaussianProcess.h>

Inheritance diagram for lsst::afw::math::NeuralNetCovariogram< T >:
lsst::afw::math::Covariogram< T >

Public Member Functions

 ~NeuralNetCovariogram () override
 
 NeuralNetCovariogram ()
 
void setSigma0 (double sigma0)
 set the _sigma0 hyper parameter
 
void setSigma1 (double sigma1)
 set the _sigma1 hyper parameter
 
operator() (ndarray::Array< const T, 1, 1 > const &, ndarray::Array< const T, 1, 1 > const &) const override
 Actually evaluate the covariogram function relating two points you want to interpolate from.
 

Detailed Description

template<typename T>
class lsst::afw::math::NeuralNetCovariogram< T >

a Covariogram that recreates a neural network with one hidden layer and infinite units in that layer

Contains two hyper parameters (_sigma0 and _sigma1) that characterize the expected variance of the function being interpolated

see Rasmussen and Williams (2006) http://www.gaussianprocess.org/gpml/ equation 4.29

Definition at line 193 of file GaussianProcess.h.

Constructor & Destructor Documentation

◆ ~NeuralNetCovariogram()

template<typename T>
lsst::afw::math::NeuralNetCovariogram< T >::~NeuralNetCovariogram ( )
overridedefault

◆ NeuralNetCovariogram()

template<typename T>
lsst::afw::math::NeuralNetCovariogram< T >::NeuralNetCovariogram ( )
explicit

Definition at line 2025 of file GaussianProcess.cc.

2025 {
2026 _sigma0 = 1.0;
2027 _sigma1 = 1.0;
2028}

Member Function Documentation

◆ operator()()

template<typename T>
T lsst::afw::math::NeuralNetCovariogram< T >::operator() ( ndarray::Array< const T, 1, 1 > const & p1,
ndarray::Array< const T, 1, 1 > const & p2 ) const
overridevirtual

Actually evaluate the covariogram function relating two points you want to interpolate from.

Parameters
[in]p1the first point
[in]p2the second point

Reimplemented from lsst::afw::math::Covariogram< T >.

Definition at line 2031 of file GaussianProcess.cc.

2032 {
2033 int i, dim;
2034 double num, denom1, denom2, arg;
2035
2036 dim = p1.template getSize<0>();
2037
2038 num = 2.0 * _sigma0;
2039 denom1 = 1.0 + 2.0 * _sigma0;
2040 denom2 = 1.0 + 2.0 * _sigma0;
2041
2042 for (i = 0; i < dim; i++) {
2043 num += 2.0 * p1[i] * p2[i] * _sigma1;
2044 denom1 += 2.0 * p1[i] * p1[i] * _sigma1;
2045 denom2 += 2.0 * p2[i] * p2[i] * _sigma1;
2046 }
2047
2048 arg = num / ::sqrt(denom1 * denom2);
2049 return T(2.0 * (::asin(arg)) / 3.141592654);
2050}
a Covariogram that recreates a neural network with one hidden layer and infinite units in that layer
T sqrt(T... args)

◆ setSigma0()

template<typename T>
void lsst::afw::math::NeuralNetCovariogram< T >::setSigma0 ( double sigma0)

set the _sigma0 hyper parameter

Definition at line 2053 of file GaussianProcess.cc.

2053 {
2054 _sigma0 = sigma0;
2055}

◆ setSigma1()

template<typename T>
void lsst::afw::math::NeuralNetCovariogram< T >::setSigma1 ( double sigma1)

set the _sigma1 hyper parameter

Definition at line 2058 of file GaussianProcess.cc.

2058 {
2059 _sigma1 = sigma1;
2060}

The documentation for this class was generated from the following files: