LSST Applications g063fba187b+cac8b7c890,g0f08755f38+6aee506743,g1653933729+a8ce1bb630,g168dd56ebc+a8ce1bb630,g1a2382251a+b4475c5878,g1dcb35cd9c+8f9bc1652e,g20f6ffc8e0+6aee506743,g217e2c1bcf+73dee94bd0,g28da252d5a+1f19c529b9,g2bbee38e9b+3f2625acfc,g2bc492864f+3f2625acfc,g3156d2b45e+6e55a43351,g32e5bea42b+1bb94961c2,g347aa1857d+3f2625acfc,g35bb328faa+a8ce1bb630,g3a166c0a6a+3f2625acfc,g3e281a1b8c+c5dd892a6c,g3e8969e208+a8ce1bb630,g414038480c+5927e1bc1e,g41af890bb2+8a9e676b2a,g7af13505b9+809c143d88,g80478fca09+6ef8b1810f,g82479be7b0+f568feb641,g858d7b2824+6aee506743,g89c8672015+f4add4ffd5,g9125e01d80+a8ce1bb630,ga5288a1d22+2903d499ea,gb58c049af0+d64f4d3760,gc28159a63d+3f2625acfc,gcab2d0539d+b12535109e,gcf0d15dbbd+46a3f46ba9,gda6a2b7d83+46a3f46ba9,gdaeeff99f8+1711a396fd,ge79ae78c31+3f2625acfc,gef2f8181fd+0a71e47438,gf0baf85859+c1f95f4921,gfa517265be+6aee506743,gfa999e8aa5+17cd334064,w.2024.51
LSST Data Management Base Package
Loading...
Searching...
No Matches
Public Member Functions | List of all members
lsst::afw::math::NeuralNetCovariogram< T > Class Template Reference

a Covariogram that recreates a neural network with one hidden layer and infinite units in that layer More...

#include <GaussianProcess.h>

Inheritance diagram for lsst::afw::math::NeuralNetCovariogram< T >:
lsst::afw::math::Covariogram< T >

Public Member Functions

 ~NeuralNetCovariogram () override
 
 NeuralNetCovariogram ()
 
void setSigma0 (double sigma0)
 set the _sigma0 hyper parameter
 
void setSigma1 (double sigma1)
 set the _sigma1 hyper parameter
 
operator() (ndarray::Array< const T, 1, 1 > const &, ndarray::Array< const T, 1, 1 > const &) const override
 Actually evaluate the covariogram function relating two points you want to interpolate from.
 

Detailed Description

template<typename T>
class lsst::afw::math::NeuralNetCovariogram< T >

a Covariogram that recreates a neural network with one hidden layer and infinite units in that layer

Contains two hyper parameters (_sigma0 and _sigma1) that characterize the expected variance of the function being interpolated

see Rasmussen and Williams (2006) http://www.gaussianprocess.org/gpml/ equation 4.29

Definition at line 193 of file GaussianProcess.h.

Constructor & Destructor Documentation

◆ ~NeuralNetCovariogram()

template<typename T >
lsst::afw::math::NeuralNetCovariogram< T >::~NeuralNetCovariogram ( )
overridedefault

◆ NeuralNetCovariogram()

template<typename T >
lsst::afw::math::NeuralNetCovariogram< T >::NeuralNetCovariogram ( )
explicit

Definition at line 2025 of file GaussianProcess.cc.

2025 {
2026 _sigma0 = 1.0;
2027 _sigma1 = 1.0;
2028}

Member Function Documentation

◆ operator()()

template<typename T >
T lsst::afw::math::NeuralNetCovariogram< T >::operator() ( ndarray::Array< const T, 1, 1 > const & p1,
ndarray::Array< const T, 1, 1 > const & p2 ) const
overridevirtual

Actually evaluate the covariogram function relating two points you want to interpolate from.

Parameters
[in]p1the first point
[in]p2the second point

Reimplemented from lsst::afw::math::Covariogram< T >.

Definition at line 2031 of file GaussianProcess.cc.

2032 {
2033 int i, dim;
2034 double num, denom1, denom2, arg;
2035
2036 dim = p1.template getSize<0>();
2037
2038 num = 2.0 * _sigma0;
2039 denom1 = 1.0 + 2.0 * _sigma0;
2040 denom2 = 1.0 + 2.0 * _sigma0;
2041
2042 for (i = 0; i < dim; i++) {
2043 num += 2.0 * p1[i] * p2[i] * _sigma1;
2044 denom1 += 2.0 * p1[i] * p1[i] * _sigma1;
2045 denom2 += 2.0 * p2[i] * p2[i] * _sigma1;
2046 }
2047
2048 arg = num / ::sqrt(denom1 * denom2);
2049 return T(2.0 * (::asin(arg)) / 3.141592654);
2050}
T asin(T... args)
T sqrt(T... args)

◆ setSigma0()

template<typename T >
void lsst::afw::math::NeuralNetCovariogram< T >::setSigma0 ( double sigma0)

set the _sigma0 hyper parameter

Definition at line 2053 of file GaussianProcess.cc.

2053 {
2054 _sigma0 = sigma0;
2055}

◆ setSigma1()

template<typename T >
void lsst::afw::math::NeuralNetCovariogram< T >::setSigma1 ( double sigma1)

set the _sigma1 hyper parameter

Definition at line 2058 of file GaussianProcess.cc.

2058 {
2059 _sigma1 = sigma1;
2060}
table::Key< double > sigma1

The documentation for this class was generated from the following files: