LSST Applications g00274db5b6+edbf708997,g00d0e8bbd7+edbf708997,g199a45376c+5137f08352,g1fd858c14a+1d4b6db739,g262e1987ae+f4d9505c4f,g29ae962dfc+7156fb1a53,g2cef7863aa+73c82f25e4,g35bb328faa+edbf708997,g3e17d7035e+5b3adc59f5,g3fd5ace14f+852fa6fbcb,g47891489e3+6dc8069a4c,g53246c7159+edbf708997,g64539dfbff+9f17e571f4,g67b6fd64d1+6dc8069a4c,g74acd417e5+ae494d68d9,g786e29fd12+af89c03590,g7ae74a0b1c+a25e60b391,g7aefaa3e3d+536efcc10a,g7cc15d900a+d121454f8d,g87389fa792+a4172ec7da,g89139ef638+6dc8069a4c,g8d7436a09f+28c28d8d6d,g8ea07a8fe4+db21c37724,g92c671f44c+9f17e571f4,g98df359435+b2e6376b13,g99af87f6a8+b0f4ad7b8d,gac66b60396+966efe6077,gb88ae4c679+7dec8f19df,gbaa8f7a6c5+38b34f4976,gbf99507273+edbf708997,gc24b5d6ed1+9f17e571f4,gca7fc764a6+6dc8069a4c,gcc769fe2a4+97d0256649,gd7ef33dd92+6dc8069a4c,gdab6d2f7ff+ae494d68d9,gdbb4c4dda9+9f17e571f4,ge410e46f29+6dc8069a4c,geaed405ab2+e194be0d2b,w.2025.47
LSST Data Management Base Package
Loading...
Searching...
No Matches
lsst::afw::math::NeuralNetCovariogram< T > Class Template Reference

a Covariogram that recreates a neural network with one hidden layer and infinite units in that layer More...

#include <GaussianProcess.h>

Inheritance diagram for lsst::afw::math::NeuralNetCovariogram< T >:
lsst::afw::math::Covariogram< T >

Public Member Functions

 ~NeuralNetCovariogram () override
 
 NeuralNetCovariogram ()
 
void setSigma0 (double sigma0)
 set the _sigma0 hyper parameter
 
void setSigma1 (double sigma1)
 set the _sigma1 hyper parameter
 
operator() (ndarray::Array< const T, 1, 1 > const &, ndarray::Array< const T, 1, 1 > const &) const override
 Actually evaluate the covariogram function relating two points you want to interpolate from.
 

Detailed Description

template<typename T>
class lsst::afw::math::NeuralNetCovariogram< T >

a Covariogram that recreates a neural network with one hidden layer and infinite units in that layer

Contains two hyper parameters (_sigma0 and _sigma1) that characterize the expected variance of the function being interpolated

see Rasmussen and Williams (2006) http://www.gaussianprocess.org/gpml/ equation 4.29

Definition at line 193 of file GaussianProcess.h.

Constructor & Destructor Documentation

◆ ~NeuralNetCovariogram()

template<typename T>
lsst::afw::math::NeuralNetCovariogram< T >::~NeuralNetCovariogram ( )
overridedefault

◆ NeuralNetCovariogram()

template<typename T>
lsst::afw::math::NeuralNetCovariogram< T >::NeuralNetCovariogram ( )
explicit

Definition at line 2025 of file GaussianProcess.cc.

2025 {
2026 _sigma0 = 1.0;
2027 _sigma1 = 1.0;
2028}

Member Function Documentation

◆ operator()()

template<typename T>
T lsst::afw::math::NeuralNetCovariogram< T >::operator() ( ndarray::Array< const T, 1, 1 > const & p1,
ndarray::Array< const T, 1, 1 > const & p2 ) const
overridevirtual

Actually evaluate the covariogram function relating two points you want to interpolate from.

Parameters
[in]p1the first point
[in]p2the second point

Reimplemented from lsst::afw::math::Covariogram< T >.

Definition at line 2031 of file GaussianProcess.cc.

2032 {
2033 int i, dim;
2034 double num, denom1, denom2, arg;
2035
2036 dim = p1.template getSize<0>();
2037
2038 num = 2.0 * _sigma0;
2039 denom1 = 1.0 + 2.0 * _sigma0;
2040 denom2 = 1.0 + 2.0 * _sigma0;
2041
2042 for (i = 0; i < dim; i++) {
2043 num += 2.0 * p1[i] * p2[i] * _sigma1;
2044 denom1 += 2.0 * p1[i] * p1[i] * _sigma1;
2045 denom2 += 2.0 * p2[i] * p2[i] * _sigma1;
2046 }
2047
2048 arg = num / ::sqrt(denom1 * denom2);
2049 return T(2.0 * (::asin(arg)) / 3.141592654);
2050}
a Covariogram that recreates a neural network with one hidden layer and infinite units in that layer
T sqrt(T... args)

◆ setSigma0()

template<typename T>
void lsst::afw::math::NeuralNetCovariogram< T >::setSigma0 ( double sigma0)

set the _sigma0 hyper parameter

Definition at line 2053 of file GaussianProcess.cc.

2053 {
2054 _sigma0 = sigma0;
2055}

◆ setSigma1()

template<typename T>
void lsst::afw::math::NeuralNetCovariogram< T >::setSigma1 ( double sigma1)

set the _sigma1 hyper parameter

Definition at line 2058 of file GaussianProcess.cc.

2058 {
2059 _sigma1 = sigma1;
2060}

The documentation for this class was generated from the following files: