|
LSST Applications g00d0e8bbd7+8c5ae1fdc5,g013ef56533+603670b062,g083dd6704c+2e189452a7,g199a45376c+0ba108daf9,g1c5cce2383+bc9f6103a4,g1fd858c14a+cd69ed4fc1,g210f2d0738+c4742f2e9e,g262e1987ae+612fa42d85,g29ae962dfc+83d129e820,g2cef7863aa+aef1011c0b,g35bb328faa+8c5ae1fdc5,g3fd5ace14f+5eaa884f2a,g47891489e3+e32160a944,g53246c7159+8c5ae1fdc5,g5b326b94bb+dcc56af22d,g64539dfbff+c4742f2e9e,g67b6fd64d1+e32160a944,g74acd417e5+c122e1277d,g786e29fd12+668abc6043,g87389fa792+8856018cbb,g88cb488625+47d24e4084,g89139ef638+e32160a944,g8d7436a09f+d14b4ff40a,g8ea07a8fe4+b212507b11,g90f42f885a+e1755607f3,g97be763408+34be90ab8c,g98df359435+ec1fa61bf1,ga2180abaac+8c5ae1fdc5,ga9e74d7ce9+43ac651df0,gbf99507273+8c5ae1fdc5,gc2a301910b+c4742f2e9e,gca7fc764a6+e32160a944,gd7ef33dd92+e32160a944,gdab6d2f7ff+c122e1277d,gdb1e2cdc75+1b18322db8,ge410e46f29+e32160a944,ge41e95a9f2+c4742f2e9e,geaed405ab2+0d91c11c6d,w.2025.44
LSST Data Management Base Package
|
A basis interface for 2-d series expansions. More...
#include <Basis2d.h>
Public Types | |
| using | Function = ... |
| A Function2d object that uses this basis. | |
| using | Scaled = ... |
| The type returned by scale(). | |
| using | Workspace = ... |
| The type returned by makeWorkspace(). | |
Public Member Functions | |
| std::size_t | getOrder () const |
| Return the maximum order of the basis. | |
| std::size_t | size () const |
| Return the number of basis functions. | |
| Scaled | scaled (Scaling2d const &first) const |
Return a scaled basis that delegates to a copy of this. | |
| Workspace | makeWorkspace () const |
| Allocate workspace that can be passed to sumWith() and fill() to avoid repeated memory allocations. | |
| template<typename Vector> | |
| double | sumWith (geom::Point2D const &point, Vector const &coefficients) const |
| Evaluate a basis expansion with the given coefficients. | |
| template<typename Vector> | |
| double | sumWith (geom::Point2D const &point, Vector const &coefficients, Workspace &workspace) const |
| Evaluate a basis expansion with the given coefficients (external workspace version). | |
| template<typename Vector> | |
| void | fill (geom::Point2D const &point, Vector &&basis) const |
| Evaluate the basis at a given point. | |
| template<typename Vector> | |
| void | fill (geom::Point2D const &point, Vector &&basis, Workspace &workspace) const |
| Evaluate the basis at a given point (external workspace version). | |
A basis interface for 2-d series expansions.
| using lsst::geom::polynomials::Basis2d< Basis1d >::Function = ... |
A Function2d object that uses this basis.
| using lsst::geom::polynomials::Basis2d< Basis1d >::Scaled = ... |
| using lsst::geom::polynomials::Basis2d< Basis1d >::Workspace = ... |
The type returned by makeWorkspace().
| void lsst::geom::polynomials::Basis2d< Basis1d >::fill | ( | geom::Point2D const & | point, |
| Vector && | basis ) const |
Evaluate the basis at a given point.
| [in] | point | Point at which to evaluate the basis functions. |
| [out] | basis | Flattened output vector. See Basis1d::fill more information. |
| void lsst::geom::polynomials::Basis2d< Basis1d >::fill | ( | geom::Point2D const & | point, |
| Vector && | basis, | ||
| Workspace & | workspace ) const |
Evaluate the basis at a given point (external workspace version).
| std::size_t lsst::geom::polynomials::Basis2d< Basis1d >::getOrder | ( | ) | const |
Return the maximum order of the basis.
| Workspace lsst::geom::polynomials::Basis2d< Basis1d >::makeWorkspace | ( | ) | const |
| Scaled lsst::geom::polynomials::Basis2d< Basis1d >::scaled | ( | Scaling2d const & | first | ) | const |
Return a scaled basis that delegates to a copy of this.
The scaled basis will transform all points by the given scaling before evaluating the basis functions in the same way as this.
| std::size_t lsst::geom::polynomials::Basis2d< Basis1d >::size | ( | ) | const |
Return the number of basis functions.
| double lsst::geom::polynomials::Basis2d< Basis1d >::sumWith | ( | geom::Point2D const & | point, |
| Vector const & | coefficients ) const |
Evaluate a basis expansion with the given coefficients.
If the 1-d basis elements are \(B_n(x)\) and the given coefficients are a vector \(a_{p, q}\), this computes
\[ \sum_{p = 0, q = 0}^{p + q \le N} a_{p,q} B_{p}(x) B_{q}(y) \]
| [in] | point | Point at which to evaluate the expansion. |
| [in] | coefficients | Flattened coefficients vector. See Basis1d::sumWith for more information. |
| double lsst::geom::polynomials::Basis2d< Basis1d >::sumWith | ( | geom::Point2D const & | point, |
| Vector const & | coefficients, | ||
| Workspace & | workspace ) const |
Evaluate a basis expansion with the given coefficients (external workspace version).