LSST Applications g0000d66e7c+ce78115f25,g0485b4d2cb+c8d56b10d4,g0fba68d861+fcbc158cd0,g1ec0fe41b4+3e153770da,g1fd858c14a+57ee4e1624,g2440f9efcc+8c5ae1fdc5,g35bb328faa+8c5ae1fdc5,g4d2262a081+1e04cc5a47,g53246c7159+8c5ae1fdc5,g55585698de+7a33f081c8,g56a49b3a55+b9d5cac73f,g60b5630c4e+7a33f081c8,g67b6fd64d1+035c836e50,g78460c75b0+7e33a9eb6d,g786e29fd12+668abc6043,g7ac00fbb6c+b938379438,g8352419a5c+8c5ae1fdc5,g8852436030+5ba78a36c9,g89139ef638+035c836e50,g94187f82dc+7a33f081c8,g989de1cb63+035c836e50,g9d31334357+7a33f081c8,g9f33ca652e+e34120223a,ga815be3f0b+911242149a,gabe3b4be73+8856018cbb,gabf8522325+21619da9f3,gb1101e3267+0b44b44611,gb89ab40317+035c836e50,gc91f06edcd+e59fb3c9bc,gcf25f946ba+5ba78a36c9,gd6cbbdb0b4+958adf5c1f,gde0f65d7ad+6c98dcc924,ge278dab8ac+83c63f4893,ge410e46f29+035c836e50,gf35d7ec915+97dd712d81,gf5e32f922b+8c5ae1fdc5,gf67bdafdda+035c836e50,gf6800124b1+1714c04baa,w.2025.19
LSST Data Management Base Package
|
A class that computes a matrix that applies a linear transform to a 2-d Hermite polynomial expansion. More...
#include <HermiteTransformMatrix.h>
Public Member Functions | |
Eigen::MatrixXd | compute (Eigen::Matrix2d const &transform) const |
Compute the matrix for a new linear transform. | |
Eigen::MatrixXd | compute (geom::LinearTransform const &transform) const |
Compute the matrix for a new linear transform. | |
Eigen::MatrixXd | compute (Eigen::Matrix2d const &transform, int order) const |
Compute the matrix for a new linear transform at the given order (must be <= getOrder()). | |
Eigen::MatrixXd | compute (geom::LinearTransform const &transform, int order) const |
Compute the matrix for a new linear transform at the given order (must be <= getOrder()). | |
Eigen::MatrixXd | getCoefficientMatrix () const |
Return the matrix that maps (1-d) regular polynomials to the alternate Hermite polynomials. | |
Eigen::MatrixXd | getInverseCoefficientMatrix () const |
Return the matrix that maps (1-d) alternate Hermite polynomials to regular polynomials. | |
int | getOrder () const |
Return the maximum order at which the matrix can be computed. | |
HermiteTransformMatrix (int order) | |
Construct an instance able to compute the transform matrix at up to the given order. | |
A class that computes a matrix that applies a linear transform to a 2-d Hermite polynomial expansion.
Let
\[ Z_{\boldsymbol{n}}\!(\boldsymbol{x}) \equiv \mathcal{H}_{n_0}\!(x_0)\;\mathcal{H}_{n_1}\!(x_1) \]
where
\[ \mathcal{H}_n(x)=(2^n \pi^{1/2} n!)^{-1/2}H_n(x) \]
is the \(i\)th "alternate" Hermite polynomial. This function computes the matrix \(\boldsymbol{Q}(\boldsymbol{U})\) given a linear transform \(\boldsymbol{U}\) such that
\[ Z_{\boldsymbol{m}}\!(\boldsymbol{U}\boldsymbol{x}) = \sum_{\boldsymbol{n}} Q_{\boldsymbol{m},\boldsymbol{n}}\!(\boldsymbol{U})\,Z_{\boldsymbol{n}}\!(\boldsymbol{x}) \]
Definition at line 54 of file HermiteTransformMatrix.h.
|
explicit |
Construct an instance able to compute the transform matrix at up to the given order.
|
inline |
Compute the matrix for a new linear transform.
Definition at line 58 of file HermiteTransformMatrix.h.
Eigen::MatrixXd lsst::shapelet::HermiteTransformMatrix::compute | ( | Eigen::Matrix2d const & | transform, |
int | order ) const |
Compute the matrix for a new linear transform at the given order (must be <= getOrder()).
|
inline |
Compute the matrix for a new linear transform.
Definition at line 63 of file HermiteTransformMatrix.h.
|
inline |
Compute the matrix for a new linear transform at the given order (must be <= getOrder()).
Definition at line 71 of file HermiteTransformMatrix.h.
|
inline |
Return the matrix that maps (1-d) regular polynomials to the alternate Hermite polynomials.
The matrix is always lower triangular, and has size equal to getOrder()+1.
Definition at line 80 of file HermiteTransformMatrix.h.
|
inline |
Return the matrix that maps (1-d) alternate Hermite polynomials to regular polynomials.
The matrix is always lower triangular, and has size equal to getOrder()+1.
Definition at line 87 of file HermiteTransformMatrix.h.
|
inline |
Return the maximum order at which the matrix can be computed.
Definition at line 90 of file HermiteTransformMatrix.h.