LSST Applications g063fba187b+cac8b7c890,g0f08755f38+6aee506743,g1653933729+a8ce1bb630,g168dd56ebc+a8ce1bb630,g1a2382251a+b4475c5878,g1dcb35cd9c+8f9bc1652e,g20f6ffc8e0+6aee506743,g217e2c1bcf+73dee94bd0,g28da252d5a+1f19c529b9,g2bbee38e9b+3f2625acfc,g2bc492864f+3f2625acfc,g3156d2b45e+6e55a43351,g32e5bea42b+1bb94961c2,g347aa1857d+3f2625acfc,g35bb328faa+a8ce1bb630,g3a166c0a6a+3f2625acfc,g3e281a1b8c+c5dd892a6c,g3e8969e208+a8ce1bb630,g414038480c+5927e1bc1e,g41af890bb2+8a9e676b2a,g7af13505b9+809c143d88,g80478fca09+6ef8b1810f,g82479be7b0+f568feb641,g858d7b2824+6aee506743,g89c8672015+f4add4ffd5,g9125e01d80+a8ce1bb630,ga5288a1d22+2903d499ea,gb58c049af0+d64f4d3760,gc28159a63d+3f2625acfc,gcab2d0539d+b12535109e,gcf0d15dbbd+46a3f46ba9,gda6a2b7d83+46a3f46ba9,gdaeeff99f8+1711a396fd,ge79ae78c31+3f2625acfc,gef2f8181fd+0a71e47438,gf0baf85859+c1f95f4921,gfa517265be+6aee506743,gfa999e8aa5+17cd334064,w.2024.51
LSST Data Management Base Package
|
A class that computes a matrix that applies a linear transform to a 2-d Hermite polynomial expansion. More...
#include <HermiteTransformMatrix.h>
Public Member Functions | |
Eigen::MatrixXd | compute (Eigen::Matrix2d const &transform) const |
Compute the matrix for a new linear transform. | |
Eigen::MatrixXd | compute (geom::LinearTransform const &transform) const |
Compute the matrix for a new linear transform. | |
Eigen::MatrixXd | compute (Eigen::Matrix2d const &transform, int order) const |
Compute the matrix for a new linear transform at the given order (must be <= getOrder()). | |
Eigen::MatrixXd | compute (geom::LinearTransform const &transform, int order) const |
Compute the matrix for a new linear transform at the given order (must be <= getOrder()). | |
Eigen::MatrixXd | getCoefficientMatrix () const |
Return the matrix that maps (1-d) regular polynomials to the alternate Hermite polynomials. | |
Eigen::MatrixXd | getInverseCoefficientMatrix () const |
Return the matrix that maps (1-d) alternate Hermite polynomials to regular polynomials. | |
int | getOrder () const |
Return the maximum order at which the matrix can be computed. | |
HermiteTransformMatrix (int order) | |
Construct an instance able to compute the transform matrix at up to the given order. | |
A class that computes a matrix that applies a linear transform to a 2-d Hermite polynomial expansion.
Let
\[ Z_{\boldsymbol{n}}\!(\boldsymbol{x}) \equiv \mathcal{H}_{n_0}\!(x_0)\;\mathcal{H}_{n_1}\!(x_1) \]
where
\[ \mathcal{H}_n(x)=(2^n \pi^{1/2} n!)^{-1/2}H_n(x) \]
is the \(i\)th "alternate" Hermite polynomial. This function computes the matrix \(\boldsymbol{Q}(\boldsymbol{U})\) given a linear transform \(\boldsymbol{U}\) such that
\[ Z_{\boldsymbol{m}}\!(\boldsymbol{U}\boldsymbol{x}) = \sum_{\boldsymbol{n}} Q_{\boldsymbol{m},\boldsymbol{n}}\!(\boldsymbol{U})\,Z_{\boldsymbol{n}}\!(\boldsymbol{x}) \]
Definition at line 54 of file HermiteTransformMatrix.h.
|
explicit |
Construct an instance able to compute the transform matrix at up to the given order.
|
inline |
Compute the matrix for a new linear transform.
Definition at line 58 of file HermiteTransformMatrix.h.
Eigen::MatrixXd lsst::shapelet::HermiteTransformMatrix::compute | ( | Eigen::Matrix2d const & | transform, |
int | order ) const |
Compute the matrix for a new linear transform at the given order (must be <= getOrder()).
|
inline |
Compute the matrix for a new linear transform.
Definition at line 63 of file HermiteTransformMatrix.h.
|
inline |
Compute the matrix for a new linear transform at the given order (must be <= getOrder()).
Definition at line 71 of file HermiteTransformMatrix.h.
|
inline |
Return the matrix that maps (1-d) regular polynomials to the alternate Hermite polynomials.
The matrix is always lower triangular, and has size equal to getOrder()+1.
Definition at line 80 of file HermiteTransformMatrix.h.
|
inline |
Return the matrix that maps (1-d) alternate Hermite polynomials to regular polynomials.
The matrix is always lower triangular, and has size equal to getOrder()+1.
Definition at line 87 of file HermiteTransformMatrix.h.
|
inline |
Return the maximum order at which the matrix can be computed.
Definition at line 90 of file HermiteTransformMatrix.h.