LSST Applications g04e9c324dd+8c5ae1fdc5,g134cb467dc+b203dec576,g18429d2f64+358861cd2c,g199a45376c+0ba108daf9,g1fd858c14a+dd066899e3,g262e1987ae+ebfced1d55,g29ae962dfc+72fd90588e,g2cef7863aa+aef1011c0b,g35bb328faa+8c5ae1fdc5,g3fd5ace14f+b668f15bc5,g4595892280+3897dae354,g47891489e3+abcf9c3559,g4d44eb3520+fb4ddce128,g53246c7159+8c5ae1fdc5,g67b6fd64d1+abcf9c3559,g67fd3c3899+1f72b5a9f7,g74acd417e5+cb6b47f07b,g786e29fd12+668abc6043,g87389fa792+8856018cbb,g89139ef638+abcf9c3559,g8d7436a09f+bcf525d20c,g8ea07a8fe4+9f5ccc88ac,g90f42f885a+6054cc57f1,g97be763408+06f794da49,g9dd6db0277+1f72b5a9f7,ga681d05dcb+7e36ad54cd,gabf8522325+735880ea63,gac2eed3f23+abcf9c3559,gb89ab40317+abcf9c3559,gbf99507273+8c5ae1fdc5,gd8ff7fe66e+1f72b5a9f7,gdab6d2f7ff+cb6b47f07b,gdc713202bf+1f72b5a9f7,gdfd2d52018+8225f2b331,ge365c994fd+375fc21c71,ge410e46f29+abcf9c3559,geaed405ab2+562b3308c0,gf9a733ac38+8c5ae1fdc5,w.2025.35
LSST Data Management Base Package
|
A class that computes a matrix that applies a linear transform to a 2-d Hermite polynomial expansion. More...
#include <HermiteTransformMatrix.h>
Public Member Functions | |
Eigen::MatrixXd | compute (Eigen::Matrix2d const &transform) const |
Compute the matrix for a new linear transform. | |
Eigen::MatrixXd | compute (geom::LinearTransform const &transform) const |
Compute the matrix for a new linear transform. | |
Eigen::MatrixXd | compute (Eigen::Matrix2d const &transform, int order) const |
Compute the matrix for a new linear transform at the given order (must be <= getOrder()). | |
Eigen::MatrixXd | compute (geom::LinearTransform const &transform, int order) const |
Compute the matrix for a new linear transform at the given order (must be <= getOrder()). | |
Eigen::MatrixXd | getCoefficientMatrix () const |
Return the matrix that maps (1-d) regular polynomials to the alternate Hermite polynomials. | |
Eigen::MatrixXd | getInverseCoefficientMatrix () const |
Return the matrix that maps (1-d) alternate Hermite polynomials to regular polynomials. | |
int | getOrder () const |
Return the maximum order at which the matrix can be computed. | |
HermiteTransformMatrix (int order) | |
Construct an instance able to compute the transform matrix at up to the given order. | |
A class that computes a matrix that applies a linear transform to a 2-d Hermite polynomial expansion.
Let
\[ Z_{\boldsymbol{n}}\!(\boldsymbol{x}) \equiv \mathcal{H}_{n_0}\!(x_0)\;\mathcal{H}_{n_1}\!(x_1) \]
where
\[ \mathcal{H}_n(x)=(2^n \pi^{1/2} n!)^{-1/2}H_n(x) \]
is the \(i\)th "alternate" Hermite polynomial. This function computes the matrix \(\boldsymbol{Q}(\boldsymbol{U})\) given a linear transform \(\boldsymbol{U}\) such that
\[ Z_{\boldsymbol{m}}\!(\boldsymbol{U}\boldsymbol{x}) = \sum_{\boldsymbol{n}} Q_{\boldsymbol{m},\boldsymbol{n}}\!(\boldsymbol{U})\,Z_{\boldsymbol{n}}\!(\boldsymbol{x}) \]
Definition at line 54 of file HermiteTransformMatrix.h.
|
explicit |
Construct an instance able to compute the transform matrix at up to the given order.
|
inline |
Compute the matrix for a new linear transform.
Definition at line 58 of file HermiteTransformMatrix.h.
Eigen::MatrixXd lsst::shapelet::HermiteTransformMatrix::compute | ( | Eigen::Matrix2d const & | transform, |
int | order ) const |
Compute the matrix for a new linear transform at the given order (must be <= getOrder()).
|
inline |
Compute the matrix for a new linear transform.
Definition at line 63 of file HermiteTransformMatrix.h.
|
inline |
Compute the matrix for a new linear transform at the given order (must be <= getOrder()).
Definition at line 71 of file HermiteTransformMatrix.h.
|
inline |
Return the matrix that maps (1-d) regular polynomials to the alternate Hermite polynomials.
The matrix is always lower triangular, and has size equal to getOrder()+1.
Definition at line 80 of file HermiteTransformMatrix.h.
|
inline |
Return the matrix that maps (1-d) alternate Hermite polynomials to regular polynomials.
The matrix is always lower triangular, and has size equal to getOrder()+1.
Definition at line 87 of file HermiteTransformMatrix.h.
|
inline |
Return the maximum order at which the matrix can be computed.
Definition at line 90 of file HermiteTransformMatrix.h.