LSST Applications g0f08755f38+9c285cab97,g1635faa6d4+13f3999e92,g1653933729+a8ce1bb630,g1a0ca8cf93+bf6eb00ceb,g28da252d5a+0829b12dee,g29321ee8c0+5700dc9eac,g2bbee38e9b+9634bc57db,g2bc492864f+9634bc57db,g2cdde0e794+c2c89b37c4,g3156d2b45e+41e33cbcdc,g347aa1857d+9634bc57db,g35bb328faa+a8ce1bb630,g3a166c0a6a+9634bc57db,g3e281a1b8c+9f2c4e2fc3,g414038480c+077ccc18e7,g41af890bb2+fde0dd39b6,g5fbc88fb19+17cd334064,g781aacb6e4+a8ce1bb630,g80478fca09+55a9465950,g82479be7b0+d730eedb7d,g858d7b2824+9c285cab97,g9125e01d80+a8ce1bb630,g9726552aa6+10f999ec6a,ga5288a1d22+2a84bb7594,gacf8899fa4+c69c5206e8,gae0086650b+a8ce1bb630,gb58c049af0+d64f4d3760,gc28159a63d+9634bc57db,gcf0d15dbbd+4b7d09cae4,gda3e153d99+9c285cab97,gda6a2b7d83+4b7d09cae4,gdaeeff99f8+1711a396fd,ge2409df99d+5e831397f4,ge79ae78c31+9634bc57db,gf0baf85859+147a0692ba,gf3967379c6+41c94011de,gf3fb38a9a8+8f07a9901b,gfb92a5be7c+9c285cab97,w.2024.46
LSST Data Management Base Package
|
A class that computes a matrix that applies a linear transform to a 2-d Hermite polynomial expansion. More...
#include <HermiteTransformMatrix.h>
Public Member Functions | |
Eigen::MatrixXd | compute (Eigen::Matrix2d const &transform) const |
Compute the matrix for a new linear transform. | |
Eigen::MatrixXd | compute (geom::LinearTransform const &transform) const |
Compute the matrix for a new linear transform. | |
Eigen::MatrixXd | compute (Eigen::Matrix2d const &transform, int order) const |
Compute the matrix for a new linear transform at the given order (must be <= getOrder()). | |
Eigen::MatrixXd | compute (geom::LinearTransform const &transform, int order) const |
Compute the matrix for a new linear transform at the given order (must be <= getOrder()). | |
Eigen::MatrixXd | getCoefficientMatrix () const |
Return the matrix that maps (1-d) regular polynomials to the alternate Hermite polynomials. | |
Eigen::MatrixXd | getInverseCoefficientMatrix () const |
Return the matrix that maps (1-d) alternate Hermite polynomials to regular polynomials. | |
int | getOrder () const |
Return the maximum order at which the matrix can be computed. | |
HermiteTransformMatrix (int order) | |
Construct an instance able to compute the transform matrix at up to the given order. | |
A class that computes a matrix that applies a linear transform to a 2-d Hermite polynomial expansion.
Let
\[ Z_{\boldsymbol{n}}\!(\boldsymbol{x}) \equiv \mathcal{H}_{n_0}\!(x_0)\;\mathcal{H}_{n_1}\!(x_1) \]
where
\[ \mathcal{H}_n(x)=(2^n \pi^{1/2} n!)^{-1/2}H_n(x) \]
is the \(i\)th "alternate" Hermite polynomial. This function computes the matrix \(\boldsymbol{Q}(\boldsymbol{U})\) given a linear transform \(\boldsymbol{U}\) such that
\[ Z_{\boldsymbol{m}}\!(\boldsymbol{U}\boldsymbol{x}) = \sum_{\boldsymbol{n}} Q_{\boldsymbol{m},\boldsymbol{n}}\!(\boldsymbol{U})\,Z_{\boldsymbol{n}}\!(\boldsymbol{x}) \]
Definition at line 54 of file HermiteTransformMatrix.h.
|
explicit |
Construct an instance able to compute the transform matrix at up to the given order.
|
inline |
Compute the matrix for a new linear transform.
Definition at line 58 of file HermiteTransformMatrix.h.
Eigen::MatrixXd lsst::shapelet::HermiteTransformMatrix::compute | ( | Eigen::Matrix2d const & | transform, |
int | order ) const |
Compute the matrix for a new linear transform at the given order (must be <= getOrder()).
|
inline |
Compute the matrix for a new linear transform.
Definition at line 63 of file HermiteTransformMatrix.h.
|
inline |
Compute the matrix for a new linear transform at the given order (must be <= getOrder()).
Definition at line 71 of file HermiteTransformMatrix.h.
|
inline |
Return the matrix that maps (1-d) regular polynomials to the alternate Hermite polynomials.
The matrix is always lower triangular, and has size equal to getOrder()+1.
Definition at line 80 of file HermiteTransformMatrix.h.
|
inline |
Return the matrix that maps (1-d) alternate Hermite polynomials to regular polynomials.
The matrix is always lower triangular, and has size equal to getOrder()+1.
Definition at line 87 of file HermiteTransformMatrix.h.
|
inline |
Return the maximum order at which the matrix can be computed.
Definition at line 90 of file HermiteTransformMatrix.h.