LSST Applications g013ef56533+7c9321ec0f,g042eb84c57+c6cfa41bc3,g199a45376c+0ba108daf9,g1fd858c14a+fcad0d0313,g210f2d0738+c0f94c6586,g262e1987ae+a7e710680e,g29ae962dfc+fb55f2edb0,g2ac17093b6+61d6563b1e,g2b1d02342f+df6f932764,g2cef7863aa+aef1011c0b,g2f7ad74990+c0f94c6586,g35bb328faa+8c5ae1fdc5,g3fd5ace14f+53cf87ae69,g47891489e3+4316d04fff,g511e8cfd20+baa56acf6c,g53246c7159+8c5ae1fdc5,g54cd7ddccb+fd7ad03fde,g64539dfbff+c0f94c6586,g67b6fd64d1+4316d04fff,g67fd3c3899+c0f94c6586,g6985122a63+4316d04fff,g74acd417e5+ca833bee28,g786e29fd12+668abc6043,g81db2e9a8d+b2ec8e584f,g87389fa792+8856018cbb,g89139ef638+4316d04fff,g8d7436a09f+0a24083b20,g8ea07a8fe4+760ca7c3fc,g90f42f885a+033b1d468d,g97be763408+11eb8fd5b8,gbf99507273+8c5ae1fdc5,gcdda8b9158+e4c84c9d5c,gce8aa8abaa+8c5ae1fdc5,gd7ef33dd92+4316d04fff,gdab6d2f7ff+ca833bee28,ge410e46f29+4316d04fff,geaed405ab2+c4bbc419c6,gf9a733ac38+8c5ae1fdc5,w.2025.40
LSST Data Management Base Package
|
A class that computes a matrix that applies a linear transform to a 2-d Hermite polynomial expansion. More...
#include <HermiteTransformMatrix.h>
Public Member Functions | |
Eigen::MatrixXd | compute (Eigen::Matrix2d const &transform) const |
Compute the matrix for a new linear transform. | |
Eigen::MatrixXd | compute (geom::LinearTransform const &transform) const |
Compute the matrix for a new linear transform. | |
Eigen::MatrixXd | compute (Eigen::Matrix2d const &transform, int order) const |
Compute the matrix for a new linear transform at the given order (must be <= getOrder()). | |
Eigen::MatrixXd | compute (geom::LinearTransform const &transform, int order) const |
Compute the matrix for a new linear transform at the given order (must be <= getOrder()). | |
Eigen::MatrixXd | getCoefficientMatrix () const |
Return the matrix that maps (1-d) regular polynomials to the alternate Hermite polynomials. | |
Eigen::MatrixXd | getInverseCoefficientMatrix () const |
Return the matrix that maps (1-d) alternate Hermite polynomials to regular polynomials. | |
int | getOrder () const |
Return the maximum order at which the matrix can be computed. | |
HermiteTransformMatrix (int order) | |
Construct an instance able to compute the transform matrix at up to the given order. | |
A class that computes a matrix that applies a linear transform to a 2-d Hermite polynomial expansion.
Let
\[ Z_{\boldsymbol{n}}\!(\boldsymbol{x}) \equiv \mathcal{H}_{n_0}\!(x_0)\;\mathcal{H}_{n_1}\!(x_1) \]
where
\[ \mathcal{H}_n(x)=(2^n \pi^{1/2} n!)^{-1/2}H_n(x) \]
is the \(i\)th "alternate" Hermite polynomial. This function computes the matrix \(\boldsymbol{Q}(\boldsymbol{U})\) given a linear transform \(\boldsymbol{U}\) such that
\[ Z_{\boldsymbol{m}}\!(\boldsymbol{U}\boldsymbol{x}) = \sum_{\boldsymbol{n}} Q_{\boldsymbol{m},\boldsymbol{n}}\!(\boldsymbol{U})\,Z_{\boldsymbol{n}}\!(\boldsymbol{x}) \]
Definition at line 54 of file HermiteTransformMatrix.h.
|
explicit |
Construct an instance able to compute the transform matrix at up to the given order.
|
inline |
Compute the matrix for a new linear transform.
Definition at line 58 of file HermiteTransformMatrix.h.
Eigen::MatrixXd lsst::shapelet::HermiteTransformMatrix::compute | ( | Eigen::Matrix2d const & | transform, |
int | order ) const |
Compute the matrix for a new linear transform at the given order (must be <= getOrder()).
|
inline |
Compute the matrix for a new linear transform.
Definition at line 63 of file HermiteTransformMatrix.h.
|
inline |
Compute the matrix for a new linear transform at the given order (must be <= getOrder()).
Definition at line 71 of file HermiteTransformMatrix.h.
|
inline |
Return the matrix that maps (1-d) regular polynomials to the alternate Hermite polynomials.
The matrix is always lower triangular, and has size equal to getOrder()+1.
Definition at line 80 of file HermiteTransformMatrix.h.
|
inline |
Return the matrix that maps (1-d) alternate Hermite polynomials to regular polynomials.
The matrix is always lower triangular, and has size equal to getOrder()+1.
Definition at line 87 of file HermiteTransformMatrix.h.
|
inline |
Return the maximum order at which the matrix can be computed.
Definition at line 90 of file HermiteTransformMatrix.h.