LSST Applications g063fba187b+cac8b7c890,g0f08755f38+6aee506743,g1653933729+a8ce1bb630,g168dd56ebc+a8ce1bb630,g1a2382251a+b4475c5878,g1dcb35cd9c+8f9bc1652e,g20f6ffc8e0+6aee506743,g217e2c1bcf+73dee94bd0,g28da252d5a+1f19c529b9,g2bbee38e9b+3f2625acfc,g2bc492864f+3f2625acfc,g3156d2b45e+6e55a43351,g32e5bea42b+1bb94961c2,g347aa1857d+3f2625acfc,g35bb328faa+a8ce1bb630,g3a166c0a6a+3f2625acfc,g3e281a1b8c+c5dd892a6c,g3e8969e208+a8ce1bb630,g414038480c+5927e1bc1e,g41af890bb2+8a9e676b2a,g7af13505b9+809c143d88,g80478fca09+6ef8b1810f,g82479be7b0+f568feb641,g858d7b2824+6aee506743,g89c8672015+f4add4ffd5,g9125e01d80+a8ce1bb630,ga5288a1d22+2903d499ea,gb58c049af0+d64f4d3760,gc28159a63d+3f2625acfc,gcab2d0539d+b12535109e,gcf0d15dbbd+46a3f46ba9,gda6a2b7d83+46a3f46ba9,gdaeeff99f8+1711a396fd,ge79ae78c31+3f2625acfc,gef2f8181fd+0a71e47438,gf0baf85859+c1f95f4921,gfa517265be+6aee506743,gfa999e8aa5+17cd334064,w.2024.51
LSST Data Management Base Package
Loading...
Searching...
No Matches
defects.py
Go to the documentation of this file.
1# This file is part of ip_isr.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
21"""Support for image defects"""
22
23__all__ = ("Defects",)
24
25import logging
26import itertools
27import contextlib
28import numpy as np
29import math
30import numbers
31import astropy.table
32
33import lsst.geom
34import lsst.afw.table
36import lsst.afw.image
37import lsst.afw.geom
38from lsst.meas.algorithms import Defect
39from .calibType import IsrCalib
40
41log = logging.getLogger(__name__)
42
43SCHEMA_NAME_KEY = "DEFECTS_SCHEMA"
44SCHEMA_VERSION_KEY = "DEFECTS_SCHEMA_VERSION"
45
46
48 """Calibration handler for collections of `lsst.meas.algorithms.Defect`.
49
50 Parameters
51 ----------
52 defectList : iterable, optional
53 Collections of defects to apply to the image. Can be an iterable of
54 `lsst.meas.algorithms.Defect` or `lsst.geom.BoxI`.
55 metadata : `lsst.daf.base.PropertyList`, optional
56 Metadata to associate with the defects. Will be copied and
57 overwrite existing metadata, if any. If not supplied the existing
58 metadata will be reset.
59 normalize_on_init : `bool`
60 If True, normalization is applied to the defects in ``defectList`` to
61 remove duplicates, eliminate overlaps, etc.
62
63 Notes
64 -----
65 Defects are stored within this collection in a "reduced" or "normalized"
66 form: rather than simply storing the bounding boxes which are added to the
67 collection, we eliminate overlaps and duplicates. This normalization
68 procedure may introduce overhead when adding many new defects; it may be
69 temporarily disabled using the `Defects.bulk_update` context manager if
70 necessary.
71
72 The attributes stored in this calibration are:
73
74 _defects : `list` [`lsst.meas.algorithms.Defect`]
75 The collection of Defect objects.
76 """
77
78 """The calibration type used for ingest."""
79 _OBSTYPE = "defects"
80 _SCHEMA = ''
81 _VERSION = 2.0
82
83 def __init__(self, defectList=None, metadata=None, *, normalize_on_init=True, **kwargs):
84 self._defects = []
85
86 if defectList is not None:
87 self._bulk_update = True
88 for d in defectList:
89 self.append(d)
90 self._bulk_update = False
91
92 if normalize_on_init:
93 self._normalize()
94
95 super().__init__(**kwargs)
97
98 def _check_value(self, value):
99 """Check that the supplied value is a `~lsst.meas.algorithms.Defect`
100 or can be converted to one.
101
102 Parameters
103 ----------
104 value : `object`
105 Value to check.
106
107 Returns
108 -------
109 new : `~lsst.meas.algorithms.Defect`
110 Either the supplied value or a new object derived from it.
111
112 Raises
113 ------
114 ValueError
115 Raised if the supplied value can not be converted to
116 `~lsst.meas.algorithms.Defect`
117 """
118 if isinstance(value, Defect):
119 pass
120 elif isinstance(value, lsst.geom.BoxI):
121 value = Defect(value)
122 elif isinstance(value, lsst.geom.PointI):
123 value = Defect(lsst.geom.Box2I(value, lsst.geom.Extent2I(1, 1)))
124 elif isinstance(value, lsst.afw.image.DefectBase):
125 value = Defect(value.getBBox())
126 else:
127 raise ValueError(f"Defects must be of type Defect, BoxI, or PointI, not '{value!r}'")
128 return value
129
130 def __len__(self):
131 return len(self._defects)
132
133 def __getitem__(self, index):
134 return self._defects[index]
135
136 def __setitem__(self, index, value):
137 """Can be given a `~lsst.meas.algorithms.Defect` or a `lsst.geom.BoxI`
138 """
139 self._defects[index] = self._check_value(value)
140 self._normalize()
141
142 def __iter__(self):
143 return iter(self._defects)
144
145 def __delitem__(self, index):
146 del self._defects[index]
147
148 def __eq__(self, other):
149 """Compare if two `Defects` are equal.
150
151 Two `Defects` are equal if their bounding boxes are equal and in
152 the same order. Metadata content is ignored.
153 """
154 super().__eq__(other)
155
156 if not isinstance(other, self.__class____class__):
157 return False
158
159 # checking the bboxes with zip() only works if same length
160 if len(self) != len(other):
161 return False
162
163 # Assume equal if bounding boxes are equal
164 for d1, d2 in zip(self, other):
165 if d1.getBBox() != d2.getBBox():
166 return False
167
168 return True
169
170 def __str__(self):
171 baseStr = super().__str__()
172 return baseStr + ",".join(str(d.getBBox()) for d in self) + ")"
173
174 def _normalize(self):
175 """Recalculate defect bounding boxes for efficiency.
176
177 Notes
178 -----
179 Ideally, this would generate the provably-minimal set of bounding
180 boxes necessary to represent the defects. At present, however, that
181 doesn't happen: see DM-24781. In the cases of substantial overlaps or
182 duplication, though, this will produce a much reduced set.
183 """
184 # In bulk-update mode, normalization is a no-op.
185 if self._bulk_update:
186 return
187
188 # If we have no defects, there is nothing to normalize.
189 if len(self) == 0:
190 return
191
192 # work out the minimum and maximum bounds from all defect regions.
193 minX, minY, maxX, maxY = float('inf'), float('inf'), float('-inf'), float('-inf')
194 for defect in self:
195 bbox = defect.getBBox()
196 minX = min(minX, bbox.getMinX())
197 minY = min(minY, bbox.getMinY())
198 maxX = max(maxX, bbox.getMaxX())
199 maxY = max(maxY, bbox.getMaxY())
200
201 region = lsst.geom.Box2I(lsst.geom.Point2I(minX, minY),
202 lsst.geom.Point2I(maxX, maxY))
203
204 mask = lsst.afw.image.Mask(region)
205 self.maskPixels(mask, maskName="BAD")
206 self._defects = Defects.fromMask(mask, "BAD")._defects
207
208 @contextlib.contextmanager
209 def bulk_update(self):
210 """Temporarily suspend normalization of the defect list.
211 """
212 self._bulk_update = True
213 try:
214 yield
215 finally:
216 self._bulk_update = False
217 self._normalize()
218
219 def append(self, value):
220 self._defects.append(self._check_value(value))
221 self._normalize()
222
223 def insert(self, index, value):
224 self._defects.insert(index, self._check_value(value))
225 self._normalize()
226
227 def copy(self):
228 """Copy the defects to a new list, creating new defects from the
229 bounding boxes.
230
231 Returns
232 -------
233 new : `Defects`
234 New list with new `Defect` entries.
235
236 Notes
237 -----
238 This is not a shallow copy in that new `Defect` instances are
239 created from the original bounding boxes. It's also not a deep
240 copy since the bounding boxes are not recreated.
241 """
242 return self.__class____class__(d.getBBox() for d in self)
243
244 def transpose(self):
245 """Make a transposed copy of this defect list.
246
247 Returns
248 -------
249 retDefectList : `Defects`
250 Transposed list of defects.
251 """
252 retDefectList = self.__class____class__()
253 for defect in self:
254 bbox = defect.getBBox()
255 dimensions = bbox.getDimensions()
256 nbbox = lsst.geom.Box2I(lsst.geom.Point2I(bbox.getMinY(), bbox.getMinX()),
257 lsst.geom.Extent2I(dimensions[1], dimensions[0]))
258 retDefectList.append(nbbox)
259 return retDefectList
260
261 def maskPixels(self, mask, maskName="BAD"):
262 """Set mask plane based on these defects.
263
264 Parameters
265 ----------
266 maskedImage : `lsst.afw.image.MaskedImage` or `lsst.afw.image.Mask`
267 Image to process. Only the mask plane is updated.
268 maskName : str, optional
269 Mask plane name to use.
270 """
271 # mask bad pixels
272 if hasattr(mask, "getMask"):
273 mask = mask.getMask()
274 bitmask = mask.getPlaneBitMask(maskName)
275 for defect in self:
276 bbox = defect.getBBox()
277 lsst.afw.geom.SpanSet(bbox).clippedTo(mask.getBBox()).setMask(mask, bitmask)
278
279 def updateCounters(self, columns=None, hot=None, cold=None):
280 """Update metadata with pixel and column counts.
281
282 Parameters
283 ----------
284 columns : `int`, optional
285 Number of full columns masked.
286 hot : `dict` [`str`, `int`], optional
287 Dictionary with the count of hot pixels, indexed by amplifier name.
288 cold : `dict` [`str`, `int`], optional
289 Dictionary with the count of hot pixels, indexed by amplifier name.
290 """
291 mdSupplemental = dict()
292 if columns:
293 mdSupplemental["LSST CALIB DEFECTS N_BAD_COLUMNS"] = columns
294 if hot:
295 for amp, count in hot.items():
296 mdSupplemental[f"LSST CALIB DEFECTS {amp} N_HOT"] = count
297 if cold:
298 for amp, count in cold.items():
299 mdSupplemental[f"LSST CALIB DEFECTS {amp} N_COLD"] = count
300 self.getMetadata().update(mdSupplemental)
301
303 """Convert defect list to `~lsst.afw.table.BaseCatalog` using the
304 FITS region standard.
305
306 Returns
307 -------
308 table : `lsst.afw.table.BaseCatalog`
309 Defects in tabular form.
310
311 Notes
312 -----
313 The table created uses the
314 `FITS regions <https://fits.gsfc.nasa.gov/registry/region.html>`_
315 definition tabular format. The ``X`` and ``Y`` coordinates are
316 converted to FITS Physical coordinates that have origin pixel (1, 1)
317 rather than the (0, 0) used in LSST software.
318 """
319 self.updateMetadata()
320 nrows = len(self._defects)
321
322 if nrows:
323 # Adding entire columns is more efficient than adding
324 # each element separately
325 xCol = []
326 yCol = []
327 rCol = []
328 shapes = []
329 for i, defect in enumerate(self._defects):
330 box = defect.getBBox()
331 center = box.getCenter()
332 # Correct for the FITS 1-based offset
333 xCol.append(center.getX() + 1.0)
334 yCol.append(center.getY() + 1.0)
335
336 width = box.width
337 height = box.height
338
339 if width == 1 and height == 1:
340 # Call this a point
341 shapeType = "POINT"
342 else:
343 shapeType = "BOX"
344
345 # Strings have to be added per row
346 shapes.append(shapeType)
347
348 rCol.append(np.array([width, height], dtype=np.float64))
349
350 table = astropy.table.Table({'X': xCol, 'Y': yCol, 'SHAPE': shapes,
351 'R': rCol, 'ROTANG': np.zeros(nrows),
352 'COMPONENT': np.arange(nrows)})
353 table.meta = self.getMetadata().toDict()
354 return table
355
356 @classmethod
357 def fromDict(cls, dictionary):
358 """Construct a calibration from a dictionary of properties.
359
360 Must be implemented by the specific calibration subclasses.
361
362 Parameters
363 ----------
364 dictionary : `dict`
365 Dictionary of properties.
366
367 Returns
368 -------
369 calib : `lsst.ip.isr.CalibType`
370 Constructed calibration.
371
372 Raises
373 ------
374 RuntimeError
375 Raised if the supplied dictionary is for a different
376 calibration.
377 """
378 calib = cls()
379
380 if calib._OBSTYPE != dictionary['metadata']['OBSTYPE']:
381 raise RuntimeError(f"Incorrect crosstalk supplied. Expected {calib._OBSTYPE}, "
382 f"found {dictionary['metadata']['OBSTYPE']}")
383
384 calib.setMetadata(dictionary['metadata'])
385 calib.calibInfoFromDict(dictionary)
386
387 xCol = dictionary['x0']
388 yCol = dictionary['y0']
389 widthCol = dictionary['width']
390 heightCol = dictionary['height']
391
392 with calib.bulk_update:
393 for x0, y0, width, height in zip(xCol, yCol, widthCol, heightCol):
394 calib.append(lsst.geom.Box2I(lsst.geom.Point2I(x0, y0),
395 lsst.geom.Extent2I(width, height)))
396 return calib
397
398 def toDict(self):
399 """Return a dictionary containing the calibration properties.
400
401 The dictionary should be able to be round-tripped through
402 `fromDict`.
403
404 Returns
405 -------
406 dictionary : `dict`
407 Dictionary of properties.
408 """
409 self.updateMetadata()
410
411 outDict = {}
412 metadata = self.getMetadata()
413 outDict['metadata'] = metadata
414
415 xCol = []
416 yCol = []
417 widthCol = []
418 heightCol = []
419
420 nrows = len(self._defects)
421 if nrows:
422 for defect in self._defects:
423 box = defect.getBBox()
424 xCol.append(box.getBeginX())
425 yCol.append(box.getBeginY())
426 widthCol.append(box.getWidth())
427 heightCol.append(box.getHeight())
428
429 outDict['x0'] = xCol
430 outDict['y0'] = yCol
431 outDict['width'] = widthCol
432 outDict['height'] = heightCol
433
434 return outDict
435
436 def toTable(self):
437 """Convert defects to a simple table form that we use to write
438 to text files.
439
440 Returns
441 -------
442 table : `lsst.afw.table.BaseCatalog`
443 Defects in simple tabular form.
444
445 Notes
446 -----
447 These defect tables are used as the human readable definitions
448 of defects in calibration data definition repositories. The format
449 is to use four columns defined as follows:
450
451 x0 : `int`
452 X coordinate of bottom left corner of box.
453 y0 : `int`
454 Y coordinate of bottom left corner of box.
455 width : `int`
456 X extent of the box.
457 height : `int`
458 Y extent of the box.
459 """
460 tableList = []
461 self.updateMetadata()
462
463 xCol = []
464 yCol = []
465 widthCol = []
466 heightCol = []
467
468 nrows = len(self._defects)
469 if nrows:
470 for defect in self._defects:
471 box = defect.getBBox()
472 xCol.append(box.getBeginX())
473 yCol.append(box.getBeginY())
474 widthCol.append(box.getWidth())
475 heightCol.append(box.getHeight())
476
477 catalog = astropy.table.Table({'x0': xCol, 'y0': yCol, 'width': widthCol, 'height': heightCol})
478 inMeta = self.getMetadata().toDict()
479 outMeta = {k: v for k, v in inMeta.items() if v is not None}
480 catalog.meta = outMeta
481 tableList.append(catalog)
482
483 return tableList
484
485 @staticmethod
486 def _get_values(values, n=1):
487 """Retrieve N values from the supplied values.
488
489 Parameters
490 ----------
491 values : `numbers.Number` or `list` or `np.array`
492 Input values.
493 n : `int`
494 Number of values to retrieve.
495
496 Returns
497 -------
498 vals : `list` or `np.array` or `numbers.Number`
499 Single value from supplied list if ``n`` is 1, or `list`
500 containing first ``n`` values from supplied values.
501
502 Notes
503 -----
504 Some supplied tables have vectors in some columns that can also
505 be scalars. This method can be used to get the first number as
506 a scalar or the first N items from a vector as a vector.
507 """
508 if n == 1:
509 if isinstance(values, numbers.Number):
510 return values
511 else:
512 return values[0]
513
514 return values[:n]
515
516 @classmethod
517 def fromTable(cls, tableList, normalize_on_init=True):
518 """Construct a `Defects` from the contents of a
519 `~lsst.afw.table.BaseCatalog`.
520
521 Parameters
522 ----------
523 table : `lsst.afw.table.BaseCatalog`
524 Table with one row per defect.
525 normalize_on_init : `bool`, optional
526 If `True`, normalization is applied to the defects listed in the
527 table to remove duplicates, eliminate overlaps, etc. Otherwise
528 the defects in the returned object exactly match those in the
529 table.
530
531 Returns
532 -------
533 defects : `Defects`
534 A `Defects` list.
535
536 Notes
537 -----
538 Two table formats are recognized. The first is the
539 `FITS regions <https://fits.gsfc.nasa.gov/registry/region.html>`_
540 definition tabular format written by `toFitsRegionTable` where the
541 pixel origin is corrected from FITS 1-based to a 0-based origin.
542 The second is the legacy defects format using columns ``x0``, ``y0``
543 (bottom left hand pixel of box in 0-based coordinates), ``width``
544 and ``height``.
545
546 The FITS standard regions can only read BOX, POINT, or ROTBOX with
547 a zero degree rotation.
548 """
549 table = tableList[0]
550 defectList = []
551
552 schema = table.columns
553 # Check schema to see which definitions we have
554 if "X" in schema and "Y" in schema and "R" in schema and "SHAPE" in schema:
555 # This is a FITS region style table
556 isFitsRegion = True
557 elif "x0" in schema and "y0" in schema and "width" in schema and "height" in schema:
558 # This is a classic LSST-style defect table
559 isFitsRegion = False
560 else:
561 raise ValueError("Unsupported schema for defects extraction")
562
563 for record in table:
564 if isFitsRegion:
565 # Coordinates can be arrays (some shapes in the standard
566 # require this)
567 # Correct for FITS 1-based origin
568 xcen = cls._get_values(record['X']) - 1.0
569 ycen = cls._get_values(record['Y']) - 1.0
570 shape = record['SHAPE'].upper().rstrip()
571 if shape == "BOX":
573 lsst.geom.Extent2I(cls._get_values(record['R'],
574 n=2)))
575 elif shape == "POINT":
576 # Handle the case where we have an externally created
577 # FITS file.
578 box = lsst.geom.Point2I(xcen, ycen)
579 elif shape == "ROTBOX":
580 # Astropy regions always writes ROTBOX
581 rotang = cls._get_values(record['ROTANG'])
582 # We can support 0 or 90 deg
583 if math.isclose(rotang % 90.0, 0.0):
584 # Two values required
585 r = cls._get_values(record['R'], n=2)
586 if math.isclose(rotang % 180.0, 0.0):
587 width = r[0]
588 height = r[1]
589 else:
590 width = r[1]
591 height = r[0]
593 lsst.geom.Extent2I(width, height))
594 else:
595 log.warning("Defect can not be defined using ROTBOX with non-aligned rotation angle")
596 continue
597 else:
598 log.warning("Defect lists can only be defined using BOX or POINT not %s", shape)
599 continue
600
601 else:
602 # This is a classic LSST-style defect table
603 box = lsst.geom.Box2I(lsst.geom.Point2I(record['x0'], record['y0']),
604 lsst.geom.Extent2I(record['width'], record['height']))
605
606 defectList.append(box)
607
608 defects = cls(defectList, normalize_on_init=normalize_on_init)
609 newMeta = dict(table.meta)
610 defects.updateMetadata(setCalibInfo=True, **newMeta)
611
612 return defects
613
614 @classmethod
615 def readLsstDefectsFile(cls, filename, normalize_on_init=False):
616 """Read defects information from a legacy LSST format text file.
617
618 Parameters
619 ----------
620 filename : `str`
621 Name of text file containing the defect information.
622
623 normalize_on_init : `bool`, optional
624 If `True`, normalization is applied to the defects listed in the
625 table to remove duplicates, eliminate overlaps, etc. Otherwise
626 the defects in the returned object exactly match those in the
627 table.
628
629 Returns
630 -------
631 defects : `Defects`
632 The defects.
633
634 Notes
635 -----
636 These defect text files are used as the human readable definitions
637 of defects in calibration data definition repositories. The format
638 is to use four columns defined as follows:
639
640 x0 : `int`
641 X coordinate of bottom left corner of box.
642 y0 : `int`
643 Y coordinate of bottom left corner of box.
644 width : `int`
645 X extent of the box.
646 height : `int`
647 Y extent of the box.
648
649 Files of this format were used historically to represent defects
650 in simple text form. Use `Defects.readText` and `Defects.writeText`
651 to use the more modern format.
652 """
653 # Use loadtxt so that ValueError is thrown if the file contains a
654 # non-integer value. genfromtxt converts bad values to -1.
655 defect_array = np.loadtxt(filename,
656 dtype=[("x0", "int"), ("y0", "int"),
657 ("x_extent", "int"), ("y_extent", "int")])
658
659 defects = (lsst.geom.Box2I(lsst.geom.Point2I(row["x0"], row["y0"]),
660 lsst.geom.Extent2I(row["x_extent"], row["y_extent"]))
661 for row in defect_array)
662
663 return cls(defects, normalize_on_init=normalize_on_init)
664
665 @classmethod
666 def fromFootprintList(cls, fpList):
667 """Compute a defect list from a footprint list, optionally growing
668 the footprints.
669
670 Parameters
671 ----------
672 fpList : `list` of `lsst.afw.detection.Footprint`
673 Footprint list to process.
674
675 Returns
676 -------
677 defects : `Defects`
678 List of defects.
679 """
680 # normalize_on_init is set to False to avoid recursively calling
681 # fromMask/fromFootprintList in Defects.__init__.
682 return cls(itertools.chain.from_iterable(lsst.afw.detection.footprintToBBoxList(fp)
683 for fp in fpList), normalize_on_init=False)
684
685 @classmethod
686 def fromMask(cls, mask, maskName):
687 """Compute a defect list from a specified mask plane.
688
689 Parameters
690 ----------
691 mask : `lsst.afw.image.Mask` or `lsst.afw.image.MaskedImage`
692 Image to process.
693 maskName : `str` or `list`
694 Mask plane name, or list of names to convert.
695
696 Returns
697 -------
698 defects : `Defects`
699 Defect list constructed from masked pixels.
700 """
701 if hasattr(mask, "getMask"):
702 mask = mask.getMask()
703 thresh = lsst.afw.detection.Threshold(mask.getPlaneBitMask(maskName),
704 lsst.afw.detection.Threshold.BITMASK)
705 fpList = lsst.afw.detection.FootprintSet(mask, thresh).getFootprints()
706 return cls.fromFootprintList(fpList)
int min
int max
A set of Footprints, associated with a MaskedImage.
A Threshold is used to pass a threshold value to detection algorithms.
Definition Threshold.h:43
A compact representation of a collection of pixels.
Definition SpanSet.h:78
Encapsulate information about a bad portion of a detector.
Definition Defect.h:39
Represent a 2-dimensional array of bitmask pixels.
Definition Mask.h:82
Tag types used to declare specialized field types.
Definition misc.h:31
An integer coordinate rectangle.
Definition Box.h:55
static Box2I makeCenteredBox(Point2D const &center, Extent const &size)
Create a box centered as closely as possible on a particular point.
Definition Box.cc:97
updateMetadata(self, camera=None, detector=None, filterName=None, setCalibId=False, setCalibInfo=False, setDate=False, **kwargs)
Definition calibType.py:207
fromTable(cls, tableList, normalize_on_init=True)
Definition defects.py:517
insert(self, index, value)
Definition defects.py:223
fromDict(cls, dictionary)
Definition defects.py:357
__setitem__(self, index, value)
Definition defects.py:136
maskPixels(self, mask, maskName="BAD")
Definition defects.py:261
fromMask(cls, mask, maskName)
Definition defects.py:686
updateCounters(self, columns=None, hot=None, cold=None)
Definition defects.py:279
readLsstDefectsFile(cls, filename, normalize_on_init=False)
Definition defects.py:615
fromFootprintList(cls, fpList)
Definition defects.py:666
__init__(self, defectList=None, metadata=None, *normalize_on_init=True, **kwargs)
Definition defects.py:83
Encapsulate information about a bad portion of a detector.
Definition Interp.h:72
std::vector< lsst::geom::Box2I > footprintToBBoxList(Footprint const &footprint)
Return a list of BBoxs, whose union contains exactly the pixels in the footprint, neither more nor le...
Definition Footprint.cc:366