LSST Applications g1653933729+34a971ddd9,g1a997c3884+34a971ddd9,g2160c40384+da0d0eec6b,g28da252d5a+1236b942f7,g2bbee38e9b+e5a1bc5b38,g2bc492864f+e5a1bc5b38,g2ca4be77d2+192fe503f0,g2cdde0e794+704103fe75,g3156d2b45e+6e87dc994a,g347aa1857d+e5a1bc5b38,g35bb328faa+34a971ddd9,g3a166c0a6a+e5a1bc5b38,g3e281a1b8c+8ec26ec694,g4005a62e65+ba0306790b,g414038480c+9f5be647b3,g41af890bb2+c3a10c924f,g5065538af8+e7237db731,g5a0bb5165c+eae055db26,g717e5f8c0f+b65b5c3ae4,g80478fca09+4ce5a07937,g82479be7b0+08790af60f,g858d7b2824+b65b5c3ae4,g9125e01d80+34a971ddd9,ga5288a1d22+5df949a35e,gae0086650b+34a971ddd9,gb58c049af0+ace264a4f2,gbd397ab92a+2141afb137,gc28159a63d+e5a1bc5b38,gc805d3fbd4+b65b5c3ae4,gcf0d15dbbd+97632ccc20,gd6b7c0dfd1+de826e8718,gda6a2b7d83+97632ccc20,gdaeeff99f8+7774323b41,ge2409df99d+e6cadbf968,ge33fd446bb+b65b5c3ae4,ge79ae78c31+e5a1bc5b38,gf0baf85859+890af219f9,gf5289d68f6+a27069ed62,w.2024.37
LSST Data Management Base Package
Loading...
Searching...
No Matches
utils.py
Go to the documentation of this file.
1# This file is part of gauss2d.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
21
22import numpy as np
23
24
25def covar_to_ellipse(sigma_x_sq, sigma_y_sq, cov_xy, degrees=False):
26 """Convert covariance matrix terms to ellipse major axis, axis ratio and
27 position angle representation.
28
29 Parameters
30 ----------
31 sigma_x_sq, sigma_y_sq : `float` or array-like
32 x- and y-axis squared standard deviations of a 2-dimensional normal
33 distribution (diagonal terms of its covariance matrix).
34 Must be scalar or identical length array-likes.
35 cov_xy : `float` or array-like
36 x-y covariance of a of a 2-dimensional normal distribution
37 (off-diagonal term of its covariance matrix).
38 Must be scalar or identical length array-likes.
39 degrees : `bool`
40 Whether to return the position angle in degrees instead of radians.
41
42 Returns
43 -------
44 r_major, axrat, angle : `float` or array-like
45 Converted major-axis radius, axis ratio and position angle
46 (counter-clockwise from the +x axis) of the ellipse defined by
47 each set of input covariance matrix terms.
48
49 Notes
50 -----
51 The eigenvalues from the determinant of a covariance matrix are:
52 |a-m b|
53 |b c-m|
54 det = (a-m)(c-m) - b^2 = ac - (a+c)m + m^2 - b^2 = m^2 - (a+c)m + (ac-b^2)
55 Solving:
56 m = ((a+c) +/- sqrt((a+c)^2 - 4(ac-b^2)))/2
57 ...or equivalently:
58 m = ((a+c) +/- sqrt((a-c)^2 + 4b^2))/2
59
60 Unfortunately, the latter simplification is not as well-behaved
61 in floating point math, leading to square roots of negative numbers when
62 one of a or c is very close to zero.
63
64 The values from this function should match those from
65 `Ellipse.make_ellipse_major` to within rounding error, except in the
66 special case of sigma_x == sigma_y == 0, which returns a NaN axis ratio
67 here by default. This function mainly intended to be more convenient
68 (and possibly faster) for array-like inputs.
69 """
70 apc = sigma_x_sq + sigma_y_sq
71 x = apc/2
72 pm = np.sqrt(apc**2 - 4*(sigma_x_sq*sigma_y_sq - cov_xy**2))/2
73
74 r_major = x + pm
75 axrat = np.sqrt((x - pm)/r_major)
76 r_major = np.sqrt(r_major)
77 angle = np.arctan2(2*cov_xy, sigma_x_sq - sigma_y_sq)/2
78 return r_major, axrat, (np.degrees(angle) if degrees else angle)
79
80
81def gauss2dint(xdivsigma):
82 """Return the fraction of the total surface integral of a 2D Gaussian
83 contained with a given multiple of its dispersion.
84
85 Parameters
86 ----------
87 xdivsigma : `float`
88 The multiple of the dispersion to integrate to.
89
90 Returns
91 -------
92 frac : `float`
93 The fraction of the surface integral contained within an ellipse of
94 size `xdivsigma`.
95
96 Notes
97 -----
98 This solution can be computed as follows:
99
100 https://www.wolframalpha.com/input/?i=
101 Integrate+2*pi*x*exp(-x%5E2%2F(2*s%5E2))%2F(s*sqrt(2*pi))+dx+from+0+to+r
102 """
103 return 1 - np.exp(-xdivsigma**2/2.)
gauss2dint(xdivsigma)
Definition utils.py:81
covar_to_ellipse(sigma_x_sq, sigma_y_sq, cov_xy, degrees=False)
Definition utils.py:25