LSST Applications g0f08755f38+9c285cab97,g1635faa6d4+13f3999e92,g1653933729+a8ce1bb630,g1a0ca8cf93+bf6eb00ceb,g28da252d5a+0829b12dee,g29321ee8c0+5700dc9eac,g2bbee38e9b+9634bc57db,g2bc492864f+9634bc57db,g2cdde0e794+c2c89b37c4,g3156d2b45e+41e33cbcdc,g347aa1857d+9634bc57db,g35bb328faa+a8ce1bb630,g3a166c0a6a+9634bc57db,g3e281a1b8c+9f2c4e2fc3,g414038480c+077ccc18e7,g41af890bb2+fde0dd39b6,g5fbc88fb19+17cd334064,g781aacb6e4+a8ce1bb630,g80478fca09+55a9465950,g82479be7b0+d730eedb7d,g858d7b2824+9c285cab97,g9125e01d80+a8ce1bb630,g9726552aa6+10f999ec6a,ga5288a1d22+2a84bb7594,gacf8899fa4+c69c5206e8,gae0086650b+a8ce1bb630,gb58c049af0+d64f4d3760,gc28159a63d+9634bc57db,gcf0d15dbbd+4b7d09cae4,gda3e153d99+9c285cab97,gda6a2b7d83+4b7d09cae4,gdaeeff99f8+1711a396fd,ge2409df99d+5e831397f4,ge79ae78c31+9634bc57db,gf0baf85859+147a0692ba,gf3967379c6+41c94011de,gf3fb38a9a8+8f07a9901b,gfb92a5be7c+9c285cab97,w.2024.46
LSST Data Management Base Package
Loading...
Searching...
No Matches
Functions
lsst.gauss2d.utils Namespace Reference

Functions

 covar_to_ellipse (sigma_x_sq, sigma_y_sq, cov_xy, degrees=False)
 
 gauss2dint (xdivsigma)
 

Function Documentation

◆ covar_to_ellipse()

lsst.gauss2d.utils.covar_to_ellipse ( sigma_x_sq,
sigma_y_sq,
cov_xy,
degrees = False )
Convert covariance matrix terms to ellipse major axis, axis ratio and
position angle representation.

Parameters
----------
sigma_x_sq, sigma_y_sq : `float` or array-like
    x- and y-axis squared standard deviations of a 2-dimensional normal
    distribution (diagonal terms of its covariance matrix).
    Must be scalar or identical length array-likes.
cov_xy : `float` or array-like
    x-y covariance of a of a 2-dimensional normal distribution
    (off-diagonal term of its covariance matrix).
    Must be scalar or identical length array-likes.
degrees : `bool`
    Whether to return the position angle in degrees instead of radians.

Returns
-------
r_major, axrat, angle : `float` or array-like
    Converted major-axis radius, axis ratio and position angle
    (counter-clockwise from the +x axis) of the ellipse defined by
    each set of input covariance matrix terms.

Notes
-----
The eigenvalues from the determinant of a covariance matrix are:
|a-m b|
|b c-m|
det = (a-m)(c-m) - b^2 = ac - (a+c)m + m^2 - b^2 = m^2 - (a+c)m + (ac-b^2)
Solving:
m = ((a+c) +/- sqrt((a+c)^2 - 4(ac-b^2)))/2
...or equivalently:
m = ((a+c) +/- sqrt((a-c)^2 + 4b^2))/2

Unfortunately, the latter simplification is not as well-behaved
in floating point math, leading to square roots of negative numbers when
one of a or c is very close to zero.

The values from this function should match those from
`Ellipse.make_ellipse_major` to within rounding error, except in the
special case of sigma_x == sigma_y == 0, which returns a NaN axis ratio
here by default. This function mainly intended to be more convenient
(and possibly faster) for array-like inputs.

Definition at line 25 of file utils.py.

25def covar_to_ellipse(sigma_x_sq, sigma_y_sq, cov_xy, degrees=False):
26 """Convert covariance matrix terms to ellipse major axis, axis ratio and
27 position angle representation.
28
29 Parameters
30 ----------
31 sigma_x_sq, sigma_y_sq : `float` or array-like
32 x- and y-axis squared standard deviations of a 2-dimensional normal
33 distribution (diagonal terms of its covariance matrix).
34 Must be scalar or identical length array-likes.
35 cov_xy : `float` or array-like
36 x-y covariance of a of a 2-dimensional normal distribution
37 (off-diagonal term of its covariance matrix).
38 Must be scalar or identical length array-likes.
39 degrees : `bool`
40 Whether to return the position angle in degrees instead of radians.
41
42 Returns
43 -------
44 r_major, axrat, angle : `float` or array-like
45 Converted major-axis radius, axis ratio and position angle
46 (counter-clockwise from the +x axis) of the ellipse defined by
47 each set of input covariance matrix terms.
48
49 Notes
50 -----
51 The eigenvalues from the determinant of a covariance matrix are:
52 |a-m b|
53 |b c-m|
54 det = (a-m)(c-m) - b^2 = ac - (a+c)m + m^2 - b^2 = m^2 - (a+c)m + (ac-b^2)
55 Solving:
56 m = ((a+c) +/- sqrt((a+c)^2 - 4(ac-b^2)))/2
57 ...or equivalently:
58 m = ((a+c) +/- sqrt((a-c)^2 + 4b^2))/2
59
60 Unfortunately, the latter simplification is not as well-behaved
61 in floating point math, leading to square roots of negative numbers when
62 one of a or c is very close to zero.
63
64 The values from this function should match those from
65 `Ellipse.make_ellipse_major` to within rounding error, except in the
66 special case of sigma_x == sigma_y == 0, which returns a NaN axis ratio
67 here by default. This function mainly intended to be more convenient
68 (and possibly faster) for array-like inputs.
69 """
70 apc = sigma_x_sq + sigma_y_sq
71 x = apc/2
72 pm = np.sqrt(apc**2 - 4*(sigma_x_sq*sigma_y_sq - cov_xy**2))/2
73
74 r_major = x + pm
75 axrat = np.sqrt((x - pm)/r_major)
76 r_major = np.sqrt(r_major)
77 angle = np.arctan2(2*cov_xy, sigma_x_sq - sigma_y_sq)/2
78 return r_major, axrat, (np.degrees(angle) if degrees else angle)
79
80

◆ gauss2dint()

lsst.gauss2d.utils.gauss2dint ( xdivsigma)
Return the fraction of the total surface integral of a 2D Gaussian
contained with a given multiple of its dispersion.

Parameters
----------
xdivsigma : `float`
    The multiple of the dispersion to integrate to.

Returns
-------
frac : `float`
    The fraction of the surface integral contained within an ellipse of
    size `xdivsigma`.

Notes
-----
This solution can be computed as follows:

https://www.wolframalpha.com/input/?i=
Integrate+2*pi*x*exp(-x%5E2%2F(2*s%5E2))%2F(s*sqrt(2*pi))+dx+from+0+to+r

Definition at line 81 of file utils.py.

81def gauss2dint(xdivsigma):
82 """Return the fraction of the total surface integral of a 2D Gaussian
83 contained with a given multiple of its dispersion.
84
85 Parameters
86 ----------
87 xdivsigma : `float`
88 The multiple of the dispersion to integrate to.
89
90 Returns
91 -------
92 frac : `float`
93 The fraction of the surface integral contained within an ellipse of
94 size `xdivsigma`.
95
96 Notes
97 -----
98 This solution can be computed as follows:
99
100 https://www.wolframalpha.com/input/?i=
101 Integrate+2*pi*x*exp(-x%5E2%2F(2*s%5E2))%2F(s*sqrt(2*pi))+dx+from+0+to+r
102 """
103 return 1 - np.exp(-xdivsigma**2/2.)